

Envenimations par des frelons à pattes jaunes et autres hyménoptères en France hexagonale

Etude de plusieurs sources de données sanitaires de 2014 à 2023

Rapport d'étude de toxicovigilance

Juin 2025

Envenimations par des frelons à pattes jaunes et autres hyménoptères en France hexagonale Etude de plusieurs sources de données sanitaires de 2014 à 2023

RAPPORT d'étude de toxicovigilance

Saisine n° 2024-AST-0153

Groupe de travail « Vigilance des toxines naturelles »

Juin 2025

Citation suggérée

Anses. (2025). Envenimations par des frelons à pattes jaunes et autres hyménoptères en France hexagonale. Etude de plusieurs sources de données sanitaires de 2014 à 2023. Rapport d'étude de toxicovigilance. Saisine n° 2024-AST-0153. Anses. Maisons-Alfort. 87 p.

Mots clés

Frelon à pattes jaunes; Vespa velutina nigrithorax; hyménoptères; envenimations graves; anaphylaxie; piqûres d'insectes.

Asian hornet; Vespa velutina nigrithorax; Hymenoptera; severe poisonings; anaphylaxis; bug bites.

Présentation des intervenants

PRÉAMBULE: Les experts membres de comités d'experts spécialisés, de groupes de travail ou désignés rapporteurs sont tous nommés à titre personnel, intuitu personae, et ne représentent pas leur organisme d'appartenance.

GROUPE DE TRAVAIL

Président

Luc DE HARO - CAP de Marseille - Praticien hospitalier - Toxicologie clinique et toxinologie

Vice-Président

Gaël LE ROUX - CAP d'Angers - Praticien hospitalier - Toxicologie clinique et toxinologie

Membres

Eric ABADIE - IFREMER - Chargé de recherche - Toxicologie et biotoxines marines

David BOELS - CHU de Nantes - Praticien hospitalier - Toxicologie clinique

Nicolas DELCOURT – CAP de Toulouse - Maître de conférences des universités - Praticien hospitalier - Toxicologie clinique

Adrien MAILLOT – Responsable du Dispositif Toxicovigilance Océan-Indien – CHU de La Réunion

Magali OLIVA-LABADIE - CAP de Bordeaux - Praticien hospitalier - Toxicologie clinique

Jérôme LANGRAND - CAP de Paris - Praticien hospitalier - Toxicologie clinique

Sébastien LARRECHE – Hôpital d'instruction des armées de Bégin – Praticien hospitalier – Toxinologie et microbiologie clinique

Sylvie MICHEL - Université Paris Cité, Faculté de Pharmacie, Professeur émérite Pharmacognosie

Nathalie PARET - CAP de Lyon - Praticien hospitalier - Toxicologie clinique

Christine TOURNOUD - CAP de Nancy - Praticien hospitalier - Toxicologie clinique

RAPPORTEURS

Luc DE HARO, Nicolas DELCOURT, Magali LABADIE et Adrien MAILLOT

PARTICIPATION ANSES

Coordination et contribution scientifique

Sandra SINNO-TELLIER – Coordinatrice de la Toxicovigilance et du groupe de travail Vigilances des toxines naturelles – Direction des Alertes et des Vigilances sanitaires

Contribution scientifique

Jérémy HAMON – Chargé d'études en toxicovigilance - Direction des Alertes et des Vigilances sanitaires

Secrétariat administratif

Mme Daphné GOUVRIT - Direction des Alertes et des Vigilances sanitaires

Validation du rapport d'étude

Juliette BLOCH, directrice de la Direction des Alertes et des Vigilances Sanitaires : 26/06/2025

PARTICIPATION SANTE PUBLIQUE FRANCE

Roxane CURTET - Chargée de mission alerte et Crise - Direction Alerte et Crise

Anne FOUILLET – Biostaticienne épidémiologiste - Direction Appui, Traitements et Analyses des données Bernadette VERRAT – Médecin épidémiologiste - Direction Appui, Traitements et Analyses des données

Préparation des données

Delphine JEZEWSKI-SERRA - Chargé de projet - Direction Appui, Traitements et Analyses des données Isabelle PONTAIS - Chargée d'études scientifiques, administratrice des données - Direction Appui, Traitements et Analyses des données

Relecteur du rapport

Matthieu HANF - Directeur de la Direction Appui, Traitements et Analyses des données

RELECTEURS EXTERNES

Quentin ROME – PatriNat, Centre d'expertise et de données sur le patrimoine naturel (Office français de la biodiversité, Muséum national d'histoire naturelle)

Jean Luc BOURRAIN - Groupe de Travail Insectes Piqueurs de la Société Française d'Allergologie

Sommaire

Prése	ntation des intervenants	3
Somn	naire	5
Liste	des tableaux	7
Liste	des figures	8
Liste	des annexes	12
Sigles	s et abréviations	13
Synth	nèse	14
1	Contexte, objectifs et modalités de réalisation des travaux	16
1.1	Contexte	16
1.2	Objectifs	16
1.3	Modalités de réalisation des travaux : moyens mis en œuvre et organisation	17
1.4	Prévention des risques de conflit d'intérêts	17
2	Principales caractéristiques du frelon à pattes jaunes	18
2.1	Description du frelon à pattes jaunes	18
2.2	Habitat et cycle biologique	18
2.3	Menace pour la santé des abeilles	19
2.4	Répartition géographique	19
2.5	Appareil venimeux et venin	20
2.6	Voies d'exposition	21
2.7	Symptomatologie	21
2.8	Réglementation	22
3	Matériel et méthodes	23
3.1	Sources de données identifiées	23
3.2	Méthodes par source de données	23
3.2.1	Étude des cas des Centres antipoison	23
3.2.2	Passages aux urgences issus du réseau OSCOUR®	29
3.2.3	Hospitalisations du programme de médicalisation des systèmes d'informatio 31	n (PMSI)
3.2.4	Mortalité à partir des certificats de décès (CépiDc)	32
4	Résultats	34
4.1	Étude des cas enregistrés par les Centres antipoison	34
4.1.1	Diagramme de sélection des cas	34
4.1.2	Répartition temporelle	34
4.1.3	Répartition par âge et par sexe	39
4.1.4	Répartition géographique	40
4.1.5	Étude des cas graves	47

4.2	Passages aux urgences pour piqûre d'hyménoptère	54
4.2.1	Evolution temporelle	54
4.2.2	Evolution des passages aux urgences pour piqûre d'hyménoptère par âge et par 55	sexe
4.2.3	Répartition géographique	57
4.3	Hospitalisations pour piqûre d'hyménoptère	59
4.3.1 hospit	Evolution temporelle des hospitalisations après passages aux urgences et talisations en MCO	
4.3.2	Hospitalisations en réanimation, soins intensifs et soins continus (REA/SI/SC)	65
4.4	Mortalité en lien avec une piqûre d'hyménoptère	67
5	Synthèse des résultats issus des différentes sources	70
5.1	Evolution temporelle des envenimations par des hyménoptères	70
5.1.1	Evolution annuelle	70
5.1.2	Saisonnalité	71
5.2	Répartition géographique des envenimations par des hyménoptères	72
5.3	Gravité des envenimations par des hyménoptères	72
5.3.1 confo	Une plus grande proportion d'envenimations graves par des frelons toutes esp	
5.3.2	Des envenimations graves majoritairement dues à des réactions allergiques	72
5.4	Caractéristiques des personnes piquées par des hyménoptères	73
6	Discussion	74
6.1	Forces et limites des données des Centres antipoison	74
6.2	Forces et limites des sources Oscour®, PMSI et mortalité	74
6.3	Comparaison avec les observations de terrain	75
6.3.1	Par année	75
6.3.2	Par mois cumulés (saisonnalité)	76
6.4	Autres frelons invasifs	77
6.4.1	Frelon oriental (Vespa orientalis)	77
6.4.2	Frelons géants (Vespa mandarinia japonica et Vespa soror)	78
7	Recommandations	79
8	Conclusion et perspectives	80
9	Bibliographie	81
10	Annexes	82

Liste des tableaux

Tableau I Classification de Ring et Messmer26
Tableau II Pourcentage d'envenimations graves par catégorie d'hyménoptère enregistrées par
les CAP. 2014-2023. France hexagonale. Source : SICAP47
Tableau III Localisation des piqûres des envenimations graves enregistrées par les CAP. 2014-
2023. France hexagonale. Source : SICAP
Tableau IV Prise en charge médicale des envenimations graves par des hyménoptères
enregistrées par les CAP. 2014-2023. France hexagonale. Source : SICAP 53
Tableau V Prise en charge médicale des envenimations graves par des hyménoptères
enregistrées par les CAP. 2014-2023. France hexagonale. Source : SICAP 53
Tableau VI Nombre de passages aux urgences pour piqûre d'hyménoptère et taux de passages
aux urgences pour piqûre d'hyménoptère pour 100 000 passages toutes causes. 2014-2023.
France hexagonale. Source : OSCOUR®56
Tableau VII Caractéristiques et évolution des hospitalisations après passages aux urgences
pour piqûre d'hyménoptère et des hospitalisations en MCO et en REA/SI/SC. 2014-2023. France
hexagonale. Source : OSCOUR® et PMSI60

Liste des figures

Figure 1 Progression du frelon à pattes jaunes entre 2014 et 2023 20
Figure 2 Probabilités d'expansion de Vespa velutina en Europe définies par modélisation. En
2016, à partir du climat et des habitats (d'après (Fournier et al. 2017)). En 2100, uniquement
d'après les prédications climatiques (d'après (Barbet-Massin et al. 2013)). L'échelle de couleurs
va du bleu foncé (défavorable) au jaune (très favorable) 20
Figure 3 Diagramme de sélection des cas d'envenimation par des hyménoptères enregistrés
par les CAP. 2014-2023. France hexagonale. Source : SICAP 34
Figure 4 Répartition annuelle des envenimations par des hyménoptères (en bleu) et
pourcentage de ces envenimations par rapport à tous les cas enregistrés par les CAP (en
orange). 2014-2023. France hexagonale. Source : SICAP 35
Figure 5 Répartition annuelle des envenimations par des hyménoptères enregistrées par les
CAP par catégorie d'hyménoptères. 2014-2023. France hexagonale. Source : SICAP 36
Figure 6 Répartition annuelle des envenimations par catégorie de frelon enregistrées par les
CAP. 2014-2023. France hexagonale. Source : SICAP 36
Figure 7 Répartition cumulée par mois des envenimations par hyménoptères enregistrées par
les CAP. 2014-2023. France hexagonale. Source : SICAP 37
Figure 8 Répartition mensuelle cumulée des envenimations par des hyménoptères enregistrées
par les CAP par catégorie d'hyménoptères. 2014-2023. France hexagonale. Effectifs. Source :
SICAP 37
Figure 9 Répartition mensuelle cumulée des envenimations par des hyménoptères enregistrées
par les CAP par catégorie d'hyménoptères. Pourcentages. 2014-2023. France hexagonale.
Source : SICAP 38
Figure 10 Répartition mensuelle cumulée des envenimations par des frelons enregistrées par
les CAP par catégorie de frelons. Pourcentages. 2014-2013. France hexagonale. Source : SICAP.
38
Figure 11 Nombres et pourcentages d'envenimations tous hyménoptères confondus
enregistrées par les CAP par classe d'âges. 2014-2023. France hexagonale. Source : SICAP 39
Figure 12 Répartition des envenimations par des hyménoptères enregistrées par les CAP par
classe d'âges (tous hyménoptères confondus versus uniquement frelons). Pourcentages et
effectifs. 2014-2023. France hexagonale. Source : SICAP 40
Figure 13 Répartition des envenimations par des hyménoptères enregistrées par les CAP par
région. 2014-2023. France hexagonale. Source : SICAP41

Figure 14 Incidence (pour 100 000 habitants) des envenimations par des hyménoptères
enregistrées par les CAP par département. 2014-2023. France hexagonale. Source : SICAP. Les
points noirs représentent la localisation des CAP41
Figure 15 Répartition annuelle des envenimations par des hyménoptères enregistrées par les
CAP par région. 2014-2023. France hexagonale. Source : SICAP 42
Figure 16 Incidence (pour 100 000 habitants) des envenimations par des hyménoptères
enregistrées par les CAP par département et par année. 2014-2023. France hexagonale. Source
: SICAP. Les points noirs représentent la localisation des CAP 43
Figure 17 Répartition des envenimations par des frelons enregistrées par les CAP par région.
2014-2023. France hexagonale. Source : SICAP 44
Figure 18 Incidence (pour 100 000 habitants) des envenimations par des frelons enregistrées
par les CAP par département. Source : SICAP. Les points noirs représentent la localisation des
CAP 45
Figure 19 Répartition annuelle des envenimations par des frelons enregistrées par les CAP par
région. 2014-2023. France hexagonale. Source : SICAP 45
Figure 20 Incidence (pour 100 000 habitants) des envenimations par des frelons enregistrées
par les CAP par département et par année. 2014-2023. France hexagonale. Source : SICAP. Les
points noirs représentent la localisation des CAP 46
Figure 21 Répartition des envenimations graves et non graves enregistrées par les CAP par
catégorie d'hyménoptère. 2014-2023. France hexagonale. Source : SICAP 47
Figure 22 Répartition annuelle des envenimations graves par des hyménoptères (en bleu) et
pourcentage de ces envenimations graves par rapport aux envenimations par des
hyménoptères toutes gravités confondues (en orange) enregistrées par les CAP. 2014-2023.
France hexagonale. Source : SICAP 48
Figure 23 Répartition annuelle des envenimations graves par des hyménoptères enregistrées
par les CAP par catégorie d'hyménoptère. 2014-2023. France hexagonale. Source : SICAP 48
Figure 24 Répartition mensuelle cumulée des envenimations graves par des hyménoptères
enregistrées par les CAP. 2014-2023. France hexagonale. Source : SICAP 49
Figure 25 Répartition des envenimations graves et non graves tous hyménoptères confondus
enregistrées par les CAP par classe d'âge. Pourcentages et effectifs. 2014-2023. France
hexagonale. Source : SICAP 50
Figure 26 Répartition des envenimations tous hyménoptères confondus enregistrées par les
CAP par symptomatologie. 2014-2023. France hexagonale. Source: SICAP50

Figure 27 Répartition des envenimations graves par des hyménoptères enregistrées par les CAP
par nombre de piqûres. 2014-2023. France hexagonale. Source : SICAP51
Figure 28 Répartition des envenimations graves tous hyménoptères confondus enregistrées par
les CAP par symptomatologie et nombre de piqûres. 2014-2023. France hexagonale. Source :
SICAP51
Figure 29 Répartition des envenimations graves enregistrées par les CAP selon la catégorie
d'hyménoptères et le nombre de piqûres. 2014-2023. France hexagonale. Source : SICAP 52
Figure 30 Taux annuel de passages aux urgences pour piqûre d'hyménoptère pour 100 000
passages toutes causes. 2014-2023. France hexagonale. Source : OSCOUR® 54
Figure 31 Taux mensuel de passages aux urgences pour piqûre d'hyménoptère pour 100 000
passages toutes causes. 2014-2023. France hexagonale. Source : OSCOUR® 55
Figure 32 Taux de passages aux urgences pour piqûre d'hyménoptère pour 100 000 passages
toutes causes par mois. 2014-2023. France hexagonale. Source : OSCOUR® 55
Figure 33 Taux annuel de passages aux urgences pour piqûre d'hyménoptère pour 100 000
passages toutes causes, par sexe. 2014-2023. France hexagonale. Source : OSCOUR® 56
Figure 34 Taux annuel de passages aux urgences pour piqûre d'hyménoptère pour 100 000
passages toutes causes, par classe d'âge, 2014-2023, France hexagonale 57
Figure 35 Taux annuel de passages aux urgences pour piqûre d'hyménoptère pour 100 000
passages toutes causes et taux cumulé de passages aux urgences, par département. 2014-2023.
France hexagonale. Source : OSCOUR® 58
Figure 36 Nombre annuel d'hospitalisations pour piqûre d'hyménoptère en MCO, tous âges.
2014-2023. France hexagonale. Source : PMSI 59
Figure 37 Taux mensuel d'hospitalisations après passage aux urgences pour piqûre
d'hyménoptère pour 100 000 hospitalisations et nombre mensuel d'hospitalisations pour
piqûre d'hyménoptère en MCO. 2014-2023. France hexagonale. Source : PMSI61
Figure 38 Taux d'hospitalisations après passages aux urgences pour piqûre d'hyménoptère
pour 100 000 hospitalisations et nombre cumulé d'hospitalisations pour piqûre d'hyménoptère
en MCO par mois. 2014-2023. France hexagonale. Source : PMSI61
Figure 39 Nombre annuel d'hospitalisations pour piqûre d'hyménoptère en MCO par sexe.
2014-2023. France hexagonale. Source : PMSI 62
Figure 40 Nombre annuel d'hospitalisations pour piqûre d'hyménoptère en MCO par classe
d'âge. 2014-2023. France hexagonale. Source : PMSI 63
Figure 41 Nombre annuel d'hospitalisations en MCO pour piqûre d'hyménoptère et nombre
cumulé d'hospitalisations, par département. 2014-2023. France hexagonale. Source : PMSI. 64

Figure 42 Nombre annuel d'hospitalisations pour piqûre d'hyménoptère en REA/SI/SC et
proportion des hospitalisations en REA/SI/SC parmi les hospitalisations en MCO. 2014-2023.
France hexagonale. Source : PMSI65
Figure 43 Nombre cumulé d'hospitalisations en REA/SI/SC pour piqûre d'hyménoptère et
proportion d'hospitalisation en REA/SI/SC pour piqûre d'hyménoptère parmi l'ensemble des
hospitalisations en MCO par mois. 2014-2023. France hexagonale. Source : PMSI 66
Figure 44 Nombre annuel d'hospitalisations pour piqûre d'hyménoptère en REA/SI/SC par sexe.
2014-2023. France hexagonale. Source : PMSI 67
Figure 45 Nombre annuel d'hospitalisations pour piqûre d'hyménoptère en REA/SI/SC par
classe d'âge. 2014-2023. France hexagonale. Source : PMSI 67
Figure 46 Nombre annuel de décès en lien avec une piqûre d'hyménoptère. 2014-2023,
effectifs provisoires en 2022 et 2023. France hexagonale. Source : Inserm-CépiDc 68
Figure 47 Répartition mensuelle cumulée (en pourcentages) des décès en lien avec une piqûre
d'hyménoptère. 2014-2023. France hexagonale. Source : Inserm-CépiDc 68
Figure 48 Proportion de décès par type d'hyménoptère par année (effectif provisoire pour les
années 2022 et 2023). 2014-2023. France hexagonale 69
Figure 49 Répartition mensuelle du taux d'envenimations par des hyménoptères enregistrées
par les CAP (en orange) et du taux de passages aux urgences pour piqûre d'hyménoptère (en
bleu). France hexagonale. 2014-2023. Sources : SICAP et réseau OSCOUR® 70
Figure 50 Répartition mensuelle cumulée du taux d'envenimations par des hyménoptères
enregistrées par les CAP (en orange) et du taux de passages aux urgences pour piqûre
d'hyménoptère (en bleu). 2014-2023. France hexagonale. Sources : SICAP et réseau OSCOUR®.
Figure 51 Nombres annuels d'observations sur le terrain de l'INPN et d'envenimations
enregistrées par les CAP de frelons à pattes jaunes. 2014-2023. France hexagonale. Sources :
INPN et SICAP 76
Figure 52 Nombres mensuels cumulés d'observations de l'INPN et d'envenimations
enregistrées par les CAP de frelons à pattes jaunes. 2014-2023. France hexagonale. Sources :
INPN et SICAP 76
Figure 53 Observations de Vespa orientalis au 12/10/2023. Source : INPN.

Liste des annexes

Annexe 4 Graphiques complémentaires relatifs aux données des urgences du réseau OSCOUR®	Annexe 4 Graphiques complémentaires relatifs aux données des urgences du réseau	OSCOUR®
	Annexe 3 Cycle biologique de Vespa velutina	84
Annexe 3 Cycle biologique de Vespa velutina84	Annexe 2 Morphologie des différents hyménoptères	83
Annexe 2 Morphologie des différents hyménoptères	Annexe 1 Courrier de saisine	82

Sigles et abréviations

Anses : Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail

ATIH: Agence du traitement de l'information hospitalière

BNCI: Base nationale des cas d'intoxication

BNPC: Base nationale des produits et compositions

CAP: Centre antipoison

CCAM: Classification commune des actes médicaux

CépiDc: Centre d'épidémiologie sur les causes médicales de décès

CIM-10: Classification internationale des maladies, 10e révision

DGS : Direction générale de la santé

DA : Diagnostic associé
DP : Diagnostic principal

GT: Groupe de travail

INPN: Inventaire national du patrimoine naturel

MCO: Médecine chirurgie obstétrique

MNHN: Muséum national d'histoire naturelle

OSCOUR®: Organisation de la surveillance coordonnée des urgences

PMSI: Programme de médicalisation des systèmes d'information

PSS: Poisoning Severity Score

RPU : Résumé de passage aux urgences RTU : Réponse téléphonique à l'urgence

SCM: Service des Cas Médicaux

SICAP: Système d'information commun des CAP

SID: Système d'information décisionnel

SNDS : Système national des données de santé

SPF : Santé Publique France SU : Structures d'urgence

SurSaUD® : Surveillance sanitaire des urgences et des décès

TU: Terminal Urgence

UHCD : Unité d'hospitalisation de courte durée

Synthèse

Le frelon à pattes jaunes *Vespa velutina nigrithorax* est un frelon invasif d'origine asiatique dont la présence en France a été signalée pour la première fois dans le Lot-et Garonne en 2004.

Il s'est très facilement adapté à son environnement et a colonisé en vingt ans pratiquement l'ensemble des départements de l'hexagone et les pays européens voisins.

Insecte de la famille des hyménoptères, comme le frelon commun (frelon européen), la guêpe commune, l'abeille domestique ou le bourdon, il est reconnaissable à son abdomen brun bordé d'un anneau jaune ainsi qu'à l'extrémité jaune de ses pattes.

Sans prédateur, il se développe en se nourrissant d'autres insectes, notamment les abeilles domestiques. Une loi est entrée en vigueur le 15 mars 2025 pour endiguer sa prolifération et préserver la filière apicole.

Contrairement aux abeilles, mais à l'instar de la guêpe, le frelon à pattes jaunes ne perd pas son dard lorsqu'il pique et peut donc repiquer et injecter du venin à chaque fois.

Le venin du frelon à pattes jaunes entraîne une réaction toxique, d'autant plus sévère que le nombre de piqûres est élevé. Son venin peut aussi être responsable d'une réaction allergique, non liée à la dose injectée, une seule piqûre suffisant à la déclencher. Du fait d'allergies croisées entre les différents venins de guêpes ou frelons, c'est le plus souvent après une piqure de guêpe que les patients deviennent allergiques à celui des frelons.

A la demande de la Direction générale de la santé, l'Anses a analysé en lien avec les Centres antipoison (CAP) l'évolution des piqûres par des frelons à pattes jaunes et des autres hyménoptères enregistrées par les CAP entre 2014 et 2023 inclus. En parallèle, Santé publique France a analysé les passages aux urgences, les hospitalisations et la mortalité par piqûre d'hyménoptère pendant la même période pour dresser le bilan quantitatif complet des recours aux soins pour cette problématique. Les résultats de cette contribution sont intégrés dans le présent rapport, enrichissent les points de vue tirés des appels aux CAP et, *in fine* permettent de consolider le fondement des conclusions et recommandations grâce à la mise en place d'une méthodologie harmonisée d'exploitation des données.

Au total, 6 022 appels aux CAP et 179 141 passages aux urgences pour piqûre d'hyménoptères, dont 2 % étaient suivis d'une hospitalisation, ont été enregistrés entre 2014 et 2023 inclus. Bien que d'ordres de grandeur différents, les données des deux sources suivaient la même évolution dans le temps.

Les années 2018 et 2020 étaient marquées par un plus grand nombre de recours pour piqûre d'hyménoptère et les années 2021 et 2023 par un moins grand nombre. Les pics saisonniers pour les deux sources de données étaient observés chaque année soit au mois de juillet soit au mois d'août.

Il est possible d'identifier l'espèce d'hyménoptère lors d'un appel à un CAP. Le pourcentage de piqûres de frelons (à pattes jaunes ou autres) parmi tous les hyménoptères, était stable par année (entre 20 % et 30 %), avec une légère augmentation en 2023 (près de 40 %). Pour près de la moitié des piqûres de frelons (48 %), l'espèce n'était pas identifiée, dans un peu plus d'un quart (28 %) il s'agissait de frelon à pattes jaunes et pour le dernier quart (24 %) de frelons communs.

La saisonnalité des envenimations par des frelons, guêpes ou abeilles observée dans les données des CAP était concordante avec le cycle de vie de ces insectes.

Les données géographiques montraient une répartition homogène des piqûres d'hyménoptères, pour les appels aux CAP comme pour les passages aux urgences, dans tout l'hexagone. Les piqûres de frelons (toutes espèces) étaient plus fréquentes dans les régions de l'ouest, du sud-ouest et du sud-est de l'hexagone.

Les personnes âgées de 20 à 39 ans étaient les plus concernées par des envenimations par hyménoptères, pour les appels aux CAP (28 %) comme pour les passages aux urgences (25 %). Pour les appels aux CAP, les personnes piquées par un frelon étaient en moyenne plus âgées que celles piquées par un autre hyménoptère (50 ans versus 31 ans).

Parmi les 6 022 envenimations par des hyménoptères enregistrées par les CAP entre 2014 et 2023, 91 étaient graves (1,5 %), pouvant menacer le pronostic vital ou conduire au décès. Les frelons étaient responsables de 38 % des formes graves (alors qu'ils ne représentaient que 25 % des piqûres).

En regard, 18 213 hospitalisations pour piqûre d'hyménoptère ont été enregistrées de 2014 à 2023. Sur ces dix années, 13 % (2 354) des hospitalisations pour piqûres d'hyménoptères l'étaient en réanimation ou soins intensifs. Une tendance à l'augmentation de cette proportion est observée au cours du temps, maximale en 2023 (17 %).

Les hommes de plus de 60 ans étaient les plus concernés par une piqûre d'hyménoptère présentant un caractère de gravité quelle que soit la source de données.

D'après les certificats de décès, 256 personnes étaient décédées en lien avec une piqûre d'hyménoptère entre 2014 et 2023 (données provisoires pour 2023). Ce nombre variait de 12 à 47 par année, avec trois années plus marquées : 2022 (47 décès), 2023 (37 décès) et 2018 (34 décès). Une mention de piqûre de frelon (toutes espèces) figurait dans 27 % des certificats de ces décès, variant de 15 % en 2014 à 43 % en 2023.

Une réaction allergique, seule ou associée à des signes toxiques, était décrite dans 89 % des envenimations graves par des hyménoptères enregistrées par les CAP. Une seule piqûre avait suffi à causer l'envenimation grave dans près de la moitié des cas (48 %). Cette proportion était plus élevée en cas d'envenimation par des frelons (53 %) ou des guêpes (50 %) que par des abeilles (32 %).

Une expansion du frelon à pattes jaunes à toute l'Europe étant prévisible d'ici 2100 du fait de conditions climatiques favorables à son installation, une adaptation à sa cohabitation est donc indispensable. L'information de la population sur la conduite à tenir en cas de piqûres ou de présence de nids de frelons reste essentielle pour éviter les envenimations.

Afin de suivre l'évolution de l'impact sanitaire des envenimations par des hyménoptères, l'Anses recommande de surveiller les données des passages aux urgences, dont ceux suivis d'une hospitalisation.

La vigilance reste par ailleurs de mise pour détecter l'arrivée de nouvelles espèces de frelons invasifs, comme le frelon grand-duc (*Vespa soror*) récemment observé en Espagne.

1 Contexte, objectifs et modalités de réalisation des travaux

1.1 Contexte

Le frelon à pattes jaunes *Vespa velutina* est un frelon invasif d'origine asiatique dont la présence en France a été signalée pour la première fois dans le Lot-et Garonne en 2004. Présent dans 13 départements en 2006, le frelon asiatique avait envahi 56 départements en 2012 et a depuis conquis la France hexagonale d'après les données du Muséum national d'histoire naturelle (http://frelonasiatique.mnhn.fr/).

Prédateur de nombreux insectes dont l'abeille domestique *Apis mellifera*, *Vespa velutina* peut avoir des conséquences graves sur la santé humaine, notamment en cas de piqûres multiples, de piqûre unique localisée sur une muqueuse ou encore en cas d'allergie au venin d'hyménoptère.

Les derniers travaux de toxicovigilance, portant sur la période 2009-2013, faisaient état de 2816 cas d'envenimations par des hyménoptères rapportés aux Centres antipoison, dont 202 graves et 4 décès, mais souvent sans précision sur l'espèce impliquée (Viriot, Sinno-Tellier, et De Haro 2015).

Aujourd'hui, plus de 10 ans après ce travail et alors que le frelon à pattes jaunes a étendu son aire de répartition et semble menacer la biodiversité, les propositions de lois se multiplient (proposition de loi n°2260, relative à la lutte contre le frelon asiatique ; proposition de loi n°143 visant à endiguer la prolifération du frelon asiatique et à préserver la filière apicole). De plus, d'autres espèces de frelons non autochtones dont la dangerosité et les impacts ne sont pas établis ont été détectées en France, tel que le frelon oriental (*Vespa orientalis*), observé pour la première fois en 2021 dans le sud du pays.

La Direction générale de la santé (DGS) a donc demandé à l'Anses de réaliser une étude des données annuelles des Centres antipoison depuis 2014 afin de décrire les conséquences des expositions au frelon à pattes jaunes et aux espèces d'hyménoptères sur la santé humaine, en précisant les contextes et les conditions d'exposition (notamment géographiques), ainsi que le cas échéant les facteurs de vulnérabilité.

Par ailleurs, la DGS a demandé d'utiliser des sources de données complémentaires afin de fournir un tableau descriptif complet des conséquences des envenimations par hyménoptères sur la période d'étude : les passages aux urgences, les hospitalisations, les certificats de décès, ou toute autre source jugée utile.

1.2 Objectifs

L'étude avait pour objectifs de :

- Décrire les expositions aux hyménoptères, dont le frelon à pattes jaunes, à partir des données des Centres antipoison. Décrire plus particulièrement les cas graves, les tendances temporelles et la répartition géographique;
- Décrire les passages aux urgences, dont ceux suivis d'hospitalisation, les hospitalisations, dont celles en réanimation, et les décès par expositions aux hyménoptères, à partir des données disponibles à Santé Publique France, notamment les évolutions temporelles et géographiques;
- Faire la synthèse des conséquences des expositions au frelon à pattes jaunes et aux autres espèces d'hyménoptères pour la santé humaine à partir de l'ensemble des données sanitaires étudiées.

1.3 Modalités de réalisation des travaux : moyens mis en œuvre et organisation

Le travail a été réalisé dans le cadre d'une saisine de l'Anses (2024-AST-0153) (annexe 1). La saisine a été confiée au groupe de travail (GT) « Vigilance des toxines naturelles ».

Luc DE HARO, Nicolas DELCOURT, Magali LABADIE et Adrien MAILLOT étaient rapporteurs de l'étude pour le GT Vigilance des toxines naturelles.

Des échanges préparatoires entre l'Anses et la DGS, il est ressorti que Santé publique France disposait de données de santé complémentaires de nature à aider l'Anses à répondre aux questions de la saisine.

Aussi, l'Anses a demandé à Santé Publique France de lui transmettre les résultats de l'analyse de données sur les piqûres par hyménoptères, disponibles à Santé Publique France, pour les dispositifs suivants :

- Le réseau OSCOUR® (Organisation de la surveillance coordonnée des urgences), de 2014 à 2023 ;
- Les données PMSI (Programme de médicalisation des systèmes d'information), de 2014 à 2023;
- Les données de mortalité du CépiDc (Centre d'épidémiologie sur les causes médicales de décès) de 2014 à 2023.

Santé Publique France a ainsi apporté une contribution scientifique pour extraire et analyser les données de santé complémentaires à celles des Centres antipoison.

Ces travaux sont issus de collectifs d'experts aux compétences complémentaires.

L'étude a été réalisée dans le respect de la norme NF X 50-110 « Qualité en expertise – Prescriptions générales de compétence pour une expertise (janvier 2024) ».

1.4 Prévention des risques de conflit d'intérêts

L'Anses analyse les liens d'intérêts déclarés par les experts avant leur nomination et tout au long des travaux, afin d'éviter les risques de conflits d'intérêts au regard des points traités dans le cadre de l'étude.

Les déclarations d'intérêts des experts sont publiées sur le site internet de l'agence (https://dpi.sante.gouv.fr).

2 Principales caractéristiques du frelon à pattes jaunes

La présence en France hexagonale du frelon asiatique *Vespa velutina*, ou frelon à pattes jaunes, a été confirmée en novembre 2005, après identification formelle par Mme Claire Villemant du Muséum National d'Histoire Naturelle (MNHN) de plusieurs spécimens issus d'une colonie découverte par un habitant du département du Lot-et-Garonne (De Haro et Blanc-Brisset 2009). Les femelles fondatrices auraient été introduites en 2004 avec des poteries dans lesquelles elles hivernaient et importées de Chine par un horticulteur du Lot-et-Garonne.

2.1 Description du frelon à pattes jaunes

Le frelon à pattes jaunes *Vespa velutina* fait partie de l'ordre des hyménoptères qui regroupent plus de 100 000 espèces, parmi lesquelles figurent le frelon européen (*Vespa crabro*), les guêpes sociales (*Vespa sp.* et *Polistes sp.*), l'abeille domestique (*Apis mellifera*) et le bourdon (*Bombus sp.*) (Brunet, Girodet, et Pham-Thi 2022).

Les hyménoptères sont caractérisés par deux paires d'ailes membraneuses couplées en vol par une série de petits crochets. Le premier segment abdominal est fusionné avec le thorax, le deuxième étant resserré en « taille de guêpe ». La forme du segment thoracique est souvent réduite à un anneau étroit. La tête, très mobile, est reliée au thorax par un cou étroit et porte des yeux composés et des antennes de forme variable. Les pièces buccales sont de type broyeur-lécheur pouvant déchiqueter une nourriture solide.

Le frelon à pattes jaunes implanté en France est la sous-espèce Vespa velutina nigrithorax. Il est de couleur sombre avec des segments abdominaux bruns, bordés d'un seul segment jaune orangé en fin d'abdomen. Les pattes sont brunes sauf aux extrémités où elles prennent une couleur jaune. La tête est noire et la face est jaune ou orangée. Par comparaison, le frelon d'Europe a le corps taché de roux, de noir et de jaune et son abdomen est jaune rayé de noir.

La morphologie du frelon à pattes jaunes et des principaux hyménoptères figure en annexe 2.

2.2 Habitat et cycle biologique

En début d'année, de février à juin, les reines fécondées de l'année précédente construisent un nid primaire, petit et le plus souvent difficile à repérer. Il se trouve sous les gouttières, dans les abris de jardins, coffrets de stores, composteurs, arbres creux, haies et massifs...

Dans le courant de l'été, la majorité des colonies va construire et déménager vers un deuxième nid en extérieur. Ces deuxièmes nids sont le plus souvent situés dans les arbres, en hauteur audessus de 10 mètres et cachés par les feuilles.

Durant l'été et l'automne, les colonies¹ s'agrandissent considérablement. Les gros nids sphériques contiennent des centaines, voire des milliers de frelons en début d'automne.

Les nids de frelons à pattes jaunes sont construits pour une seule année par les reines fondatrices et ne sont pas réutilisés d'une année sur l'autre.

Le nid de frelon à pattes jaunes (Vespa velutina) a la particularité d'avoir son ouverture sur le côté, contrairement à celui du frelon européen (Vespa crabro) qui a son ouverture vers le bas.

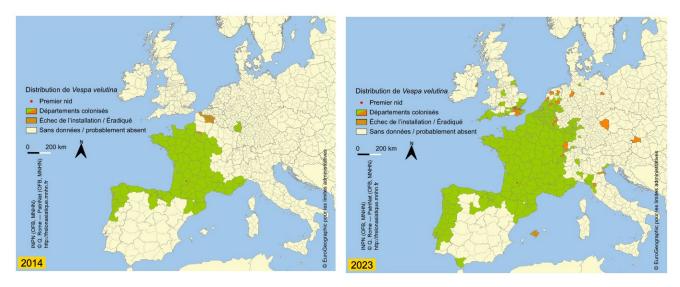
-

¹ Une colonie constitue l'ensemble des habitants du nid.

Le frelon européen peut aussi construire ses nids dans les arbres, à l'intérieur du tronc, mais celui-ci est plus allongé et possède une large ouverture à la base. Généralement le nid du frelon européen se trouve dans un cabanon, un grenier, une cheminée ou un arbre creux.

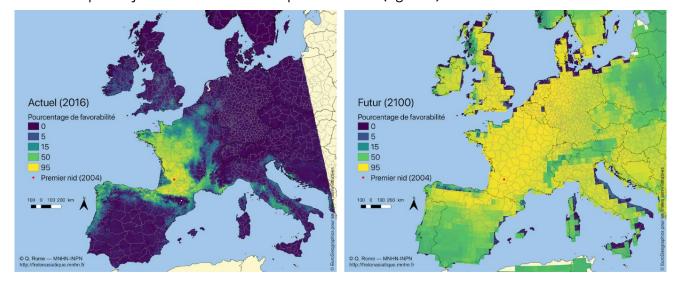
Enfin, le frelon à pattes jaunes est une espèce strictement diurne, contrairement au frelon européen qui est actif jour et nuit. Le cycle de vie du frelon à pattes jaunes est détaillé en annexe 3.

2.3 Menace pour la santé des abeilles


Sans prédateur, le frelon à pattes jaunes se développe fortement sur le territoire en impactant l'apiculture et la biodiversité. En recherche de protéines pour nourrir les larves, les ouvrières sont des prédatrices des autres insectes et notamment d'abeilles domestiques (*Apis mellifera*). Leur caractère prédateur envers les abeilles paraît plus important que celui des frelons européens. Le frelon à pattes jaunes consomme aussi une grande variété d'autres insectes (mouches, guêpes...) et d'araignées.

Les colonies d'abeilles domestiques pâtissent de la présence du frelon à pattes jaunes à cause de la prédation qu'il exerce et surtout du stress qu'il génère en stationnant devant les ruches. En vol stationnaire à une vingtaine de centimètres de l'entrée de la ruche, un frelon succède régulièrement à un autre pour capturer les abeilles qui reviennent chargées de pollen. Dans les zones de forte présence, l'activité des colonies d'abeilles s'en trouve complètement perturbée car les abeilles limitent leurs sorties, ce qui compromet la constitution de leurs réserves de nectar et pollen pour l'hivernage et donc leur survie (https://frelonasiatique, https://frelonasiatique.mnhn.fr/biologie/).

2.4 Répartition géographique


Depuis son introduction en France en 2004, le frelon à pattes jaunes s'est très facilement adapté à notre environnement ce qui a favorisé son expansion. Dix ans plus tard, le suivi de l'invasion montrait qu'en 2014 le frelon à pattes jaunes était présent dans 67 départements (figure 1). Il s'est également rapidement répandu dans les pays voisins (Espagne, Portugal, Belgique, Italie, Allemagne...) (Rome et al. 2015).

En 2023, le frelon à pattes jaunes avait colonisé pratiquement l'ensemble des départements français, à l'exception de la Corse ainsi que des Départements et régions d'Outre-mer. Il a été détecté pour la première fois en Corse en août 2024. Le nid a été détruit et une vigilance renforcée a été mise en place.

Figure 1 Progression du frelon à pattes jaunes entre 2014 et 2023. Source : https://frelonasiatique.mnhn.fr/biologie/#CarteProgression

Du fait de conditions climatiques favorables à son installation, préférant des températures chaudes et un climat relativement humide, des modèles statistiques prédisent une expansion du frelon à pattes jaunes dans toute l'Europe d'ici à 2100 (figure 2).

Figure 2 Probabilités d'expansion de Vespa velutina en Europe définies par modélisation. En 2016, à partir du climat et des habitats (d'après (Fournier et al. 2017)). En 2100, uniquement d'après les prédications climatiques (d'après (Barbet-Massin et al. 2013)). L'échelle de couleurs va du bleu foncé (défavorable) au jaune (très favorable).

Source: https://frelonasiatique.mnhn.fr/biologie/#CartePrediction

2.5 Appareil venimeux et venin

L'appareil venimeux du frelon à pattes jaunes est constitué d'un aiguillon (dard) associé à deux glandes. La glande à venin ou glande acide, est formée de deux diverticules ramifiés qui déversent leur contenu dans un réservoir aux parois musculeuses. La glande de Dufour, ou glande alcaline, est un organe impair dont le contenu, atoxique, assure un rôle tampon vis-àvis des composants acides du venin (Rollard, Chippaux, et Goyffon 2015).

Au moment de la piqûre, l'action d'un muscle fait basculer l'aiguillon replié à l'intérieur de l'abdomen au repos. Le mouvement de valves à l'intérieur de l'aiguillon permet la pénétration de ce dernier dans les tissus de la victime et génère également un mouvement de pompe qui aspire le venin depuis le réservoir de la glande et le dirige à travers l'aiguillon.

Contrairement aux abeilles, le frelon à pattes jaunes ne perd pas son dard lorsqu'il pique un mammifère. Il peut donc repiquer et injecter du venin à chaque fois, tant que sa poche à venin a eu le temps de se remplir. Son dard est plus long que celui des abeilles et des guêpes et entraîne une piqûre plus profonde. Il est capable de traverser des matériaux épais comme des bottes en caoutchouc ou des gants en cuir.

Le venin du frelon à pattes jaunes contient de très nombreuses substances inflammatoires toxiques ou allergéniques (amines biogènes [sérotonine, histamine, tyramine, dopamine, noradrénaline et adrénaline], enzymes [phospholipases A2 et B, hyluronidases, glucidases, estérases, phosphatases acides] et autres peptides [procamines, kinines, madaratoxines, antigène-5]). Il ne serait pas plus toxique que celui d'autres hyménoptères.

Du fait d'allergies croisées aux différents venins d'hyménoptères, c'est le plus souvent au cours d'une sensibilisation au venin de guêpes que les patients deviennent allergiques à celui des frelons (Van Der Brempt 2022). L'allergène majeur, Vesp v5, est très similaire à l'allergène majeur Ves v 5 de la guêpe Vespula. L'immunothérapie allergénique (désensibilisation) est le seul traitement étiologique en cas d'anaphylaxie au frelon à pattes jaunes. Le venin de frelon à pattes jaunes n'est pas disponible, ni celui de frelon européen d'ailleurs. L'immunothérapie allergénique par le venin de guêpe Vespula serait suffisante pour procurer une protection chez les patients ayant présenté une réaction allergique après piqûre de frelon européen (Vespa crabro) ou à pattes jaunes (Vespa velutina nigrithorax) (Roussel et al. 2022). En cas de réaction allergique systémique au frelon, la confirmation d'une sensibilisation au venin de guêpe par intradermoréaction ou immunoglobulines E spécifiques justifie de faire une désensibilisation avec du venin de guêpe.

2.6 Voies d'exposition

La piqûre, à l'origine d'une effraction cutanée et d'une inoculation intra-dermique de venin, représente la voie d'exposition la plus fréquente.

Des expositions oculaires, à l'origine de lésions oculaires pouvant être graves (conjonctivite, œdème autour de l'œil, voire lésions de la cornée), ont également été rapportées chez des sapeurs-pompiers ou professionnels de la lutte contre les frelons (Laborde-Castérot et al. 2021). Dans ce cas, le frelon à pattes jaunes ne projette pas de venin mais lâche une autre substance qui reste à déterminer (liquide gastro-intestinal, urine...).

2.7 Symptomatologie

Deux réactions sont possibles en cas de piqûre et peuvent être simultanées :

- une réaction toxique : à la réaction locale, caractérisée par une rougeur et un gonflement au point de piqûre, s'ajoutent des signes généraux (vomissements, diarrhée, céphalées, chute de la tension artérielle...). Les symptômes sont d'autant plus intenses que le nombre de pigûres, et donc la quantité de venin injectée, est élevé;
- une réaction allergique : elle ne dépend pas de la dose injectée, une seule piqûre suffit à la déclencher. Les symptômes sont cutanés (urticaire...), respiratoires (œdème de la langue,

de l'épiglotte et du larynx, bronchospasme...), cardiovasculaires (chute brutale de la tension artérielle), neurologiques (perte de connaissance...) et peuvent être mortels en l'absence de prise en charge médicale immédiate.

Ainsi, comme pour les autres hyménoptères, les principaux risques liés au frelon à pattes jaunes sont les piqûres multiples, les piqûres des muqueuses (bouche), les lésions oculaires par projection de liquide (seulement les frelons) et l'allergie au venin d'hyménoptères.

2.8 Réglementation

Depuis le 15 mars 2025, la loi « visant à endiguer la prolifération du frelon asiatique et à préserver la filière apicole » est entrée en vigueur².

Cette loi permet:

- la création d'un plan de lutte national, qui sera décliné en plans départementaux afin de coordonner des actions à l'échelle locale ;
- l'encadrement du piégeage, visant un piégeage sélectif pour éviter de dégrader l'entomofaune locale ;
- l'indemnisation des apiculteurs ayant subi des pertes économiques ;
- et enfin un soutien à la recherche et à l'information, pour améliorer les méthodes de lutte et sensibiliser le grand public et les collectivités.

-

² https://www.legifrance.gouv.fr/loda/id/JORFTEXT000051329052/

3 Matériel et méthodes

Les envenimations par des frelons à pattes jaunes et autres hyménoptères peuvent donner lieu à différents recours aux soins différents selon la gravité des symptômes observés (appel à un centre antipoison, consultation aux urgences, hospitalisation...).

Les experts ont étudié les envenimations à des frelons à pattes jaunes et autres hyménoptères à partir de différentes bases de données de santé, aucune n'étant exhaustive à elle seule de ces expositions.

3.1 Sources de données identifiées

Les sources considérées étaient :

- La base de données des Centres antipoison (CAP) ou système d'information commun des CAP (SICAP) ;
- Les données de passages aux urgences hospitalières, collectées dans le réseau d'Organisation de la surveillance coordonnée des urgences (OSCOUR®);
- Les données des séjours hospitaliers, enregistrées dans le Programme de médicalisation des systèmes d'information (PMSI) ;
- Les données de mortalité collectées par le CépiDc (Centre d'épidémiologie sur les causes médicales de décès) de l'Inserm.

3.2 Méthodes par source de données

3.2.1 Étude des cas des Centres antipoison

Les Centres antipoison assurent une mission de téléconsultation, d'expertise toxicologique et d'aide médicale urgente, par la réponse téléphonique à l'urgence (RTU), en cas d'exposition humaine à tout produit ou substance. La RTU est un service public, ouvert à tout demandeur (public, professionnels de santé ou autres professionnels) 24h/24 et 7jours/7.

Les appels de RTU concernent des personnes exposées à tous types de produits naturels ou de synthèse, présents sur le marché ou dans l'environnement : médicaments humains ou vétérinaires, produits d'entretien et de nettoyage, phytopharmaceutiques, biocides, compléments alimentaires, drogues, cosmétiques, champignons, animaux, végétaux...

Chaque téléconsultation est enregistrée dans le système d'information des Centres antipoison (SICAP) sous la forme d'un dossier médical.

Environ 180 000 à 200 000 expositions accidentelles sont enregistrées par an, dont 40% concernent des enfants de moins de 5 ans.

S'ajoutant aux cas provenant de la RTU, les CAP peuvent aussi enregistrer dans le SICAP des intoxications dites « hors RTU » issues d'une collecte proactive auprès de services hospitaliers ou signalées par des professionnels de santé (services d'urgences, de réanimation, laboratoires d'analyses...), d'autres professionnels, ou provenant du portail des signalements des évènements sanitaires indésirables mis en place par le Ministère en charge de la santé.

Les données du SICAP sont utilisées conformément au Règlement général sur la protection des données (RGPD) et à l'arrêté du 21 février 2022 « relatif au fonctionnement du système d'information des centres antipoison et de toxicovigilance (SICAP) ».

3.2.1.1 Schéma et période d'étude

Étude descriptive des envenimations par des frelons à pattes jaunes et autres hyménoptères enregistrés par les CAP entre le 1^{er} janvier 2014 et le 31 décembre 2023, toutes gravités confondues, d'imputabilité (lien causal) non nulle.

3.2.1.2 Source de données

Le système d'information des CAP (SICAP) est composé du Service des agents et compositions (SAC) permettant la gestion de la base nationale des produits et compositions (BNPC), et du Service des cas médicaux (SCM) permettant la mise à jour de la Base nationale des cas médicaux (BNCM).

Les CAP et l'Anses utilisent les données non nominatives du SICAP, interrogeable via un système d'information décisionnel (SID), conformément à l'arrêté du 21 février 2022 relatif au fonctionnement du SICAP pour les besoins de toxicovigilance.

3.2.1.2.1 Base des agents

Les agents (mélanges, ingrédients, classes d'agents etc.) ont été recherchés dans la BNPC, thésaurus des agents ayant motivé une téléconsultation et/ou ceux faisant l'objet d'une obligation réglementaire de déclaration de composition. Il s'agit d'une base de données dynamique, mise à jour en permanence à partir des déclarations réglementaires ou spontanées des industriels et des réponses aux demandes spécifiques des CAP, conformément à l'arrêté du 21 février 2022 relatif au fonctionnement du SICAP.

Les agents de la BNPC sont référencés dans des classes d'agents déterminées par une hiérarchie principale d'usage, ainsi que des hiérarchies secondaires.

3.2.1.2.2 Base des cas médicaux

Les cas sont issus de la BNCM, qui comprend les données à caractère personnel recueillies et enregistrées par les CAP dans le cadre de leur mission de réponse téléphonique à l'urgence (RTU), dans le respect de la loi n°78-17 du 6 janvier 1978 modifiée relative à l'informatique, aux fichiers et aux libertés et du règlement (UE) n2016/679 du 26 avril 2018 relatif à la protection des personnes physiques à l'égard du traitement des données à caractère personnel et à la libre circulation de ces données, et conformément à l'arrêté du 21 février 2022 relatif au fonctionnement du SICAP.

3.2.1.3 Identification des cas

Critères d'inclusion

Les cas inclus concernaient :

- Cas RTU, symptomatiques, d'imputabilité non nulle
- Survenus en France hexagonale
- Toutes voies d'exposition confondues
- Circonstances accidentelles
- Cas exposés à un seul hyménoptère ou à plusieurs hyménoptères en même temps (exemple : piqûres concomitantes de guêpe et d'abeille)

Critères d'exclusion

Les cas suivants ont été exclus de l'étude :

- Cas hors RTU
- Sans symptôme
- D'imputabilité nulle
- Survenus en Outre-mer ou à l'étranger
- Hyménoptères correspondant à des fourmis ou à des sclérodermes domestiques Cas exposés à un hyménoptère et à un autre agent hors hyménoptère en même temps (exemple : piqûre de guêpe et prise médicamenteuse)

3.2.1.4 Echelle d'évaluation

• Évaluation de l'imputabilité

L'imputabilité a été établie pour les cas symptomatiques selon la méthode d'imputabilité en toxicovigilance. Elle indique la force du lien causal entre une exposition à un agent et la survenue d'un effet de santé (symptôme, d'un syndrome ou d'une maladie). Elle est évaluée à partir de six déterminants (Exposition, Symptomatologie, Chronologie, Éléments objectifs de caractérisation causale, Diagnostics différentiels, Bibliographie) et comporte cinq niveaux :

- Imputabilité très probable [14],
- Imputabilité probable [13],
- Imputabilité possible [12],
- Imputabilité douteuse/non exclue [11],
- Imputabilité nulle [10].

Pour les cas associés à plusieurs symptômes, l'imputabilité globale du cas correspond à l'imputabilité du couple [exposition-symptôme] la plus élevée.

En dehors de l'exclusion des imputabilités nulles, l'imputabilité n'a pas été analysée dans les analyses macroscopiques. L'imputabilité détaillée a été analysée pour les décès.

• Évaluation de la gravité

La gravité est évaluée selon la méthode d'évaluation de la gravité en toxicovigilance adaptée du « Poisoning Severity Score (PSS) » (Persson et al. 1998). La gravité comporte cinq niveaux, superposables pour les intoxications aiguës aux niveaux du PSS :

- PSS 0 : Pas de symptôme ou signe
- PSS 1: Symptômes ou signes mineurs, faibles régressant spontanément
- PSS 2 : Symptômes ou signes prononcés ou prolongés
- PSS 3 : Symptômes ou signes sévères ou mettant en jeu le pronostic vital
- PSS 4 : Décès

La gravité globale d'un cas correspond à la gravité la plus élevée des différents symptômes et/ou signes paracliniques de ce cas considérés un à un.

Pour l'anaphylaxie, l'échelle de Ring et Messmer (Ring et Messmer 1977) a été utilisée pour évaluer la gravité des symptômes en cas de réaction allergique (tableau I).

Tableau I Classification de Ring et Messmer

Grade	Symptômes
1	Signes cutanés, érythème généralisé, urticaire, angiœdème
II	Symptômes ne menaçant pas la vie : signes cutanés, hypotension, tachycardie, difficultés ventilatoires, toux, difficultés à gonfler les poumons
III	Symptômes menaçant la vie : collapsus, tachycardie ou bradycardie, arythmies, bronchospasme
IV	Arrêt cardiaque ou respiratoire

3.2.1.5 Variables d'étude et regroupements de variables

Les variables étudiées sont présentées ci-dessous :

- Année et mois d'enregistrement du cas d'exposition
- Age et classes d'âge
 - o 0-5 ans; 6-19 ans; 20-39 ans; 40-59 ans; 60 ans et plus
 - Les mêmes classes d'âge ont été utilisées pour l'étude des cas du réseau OSCOUR®, du PMSI et du CépiDc afin de pouvoir comparer les résultats.
- Regroupements d'agents : les hyménoptères ont été regroupés en
 - o Abeille
 - o Guêpe
 - o Frelon: frelon européen, frelon asiatique, frelon non précisé
 - o Autres (bourdon...) ou hyménoptère sans précision
- Symptomatologie: toxique ou allergique
- Exposition professionnelle
- Gravité
- Imputabilité

3.2.1.6 Catégories d'agents d'intérêt

Identification des agents concernés dans la Base Nationale des Produits et Compositions (BNPC) du SICAP

 AGENT/ANIMAL/ANIMAUX TERRESTRES/INSECTE/HYMENOPTERES (GUEPES, FRELONS, ABEILLES, FOURMIS)

3.2.1.7 Cas graves et décès

3.2.1.7.1 Définition

Un cas grave correspondait, en cas de symptomatologie toxique, à une envenimation humaine de gravité évaluée comme forte (PSS3) ou à un décès, ou en cas de symptomatologie allergique à une envenimation humaine classée II, III ou IV sur l'échelle de Ring et Messmer, après relecture du dossier par au moins un expert.

3.2.1.7.2 Sélection et validation des cas graves et décès

Chacun des cas codés de gravité forte ainsi que les décès a été relu par un expert afin d'en évaluer la gravité et l'imputabilité.

Chacun des cas codés de gravité moyenne comportant certains symptômes pouvant évoquer une gravité forte (œdème de Quincke, urticaire géante, bronchospasme...) a été extrait et relu par un expert afin d'en évaluer la gravité et l'imputabilité.

Les cas qui posaient question à l'expert sur l'évaluation de la gravité ou de l'imputabilité ont été discutés entre les quatre experts afin de trouver un consensus.

3.2.1.7.3 Grille de lecture spécifique pour les cas graves et décès

Une grille de relecture des cas graves et décès a été établie afin de préciser l'espèce d'hyménoptère à l'origine de l'exposition, les circonstances d'exposition, le nombre de piqûres et leur localisation anatomique, la symptomatologie toxique ou allergique, dont un syndrome de Kounis³, la prise en charge médicale et thérapeutique, ainsi que l'évolution, et valider la gravité et l'imputabilité.

3.2.1.8 Plan d'analyse

Répartition temporelle

- Annuelle : effectifs bruts et nombre de cas hyménoptères / 1000 cas d'exposition tous agents
- Annuelle par catégorie d'hyménoptères (frelons, abeilles, guêpes, autres)
- Annuelle par catégorie de frelons (frelon européen, frelon asiatique, frelon non précisé)
- Mensuelle cumulée : Saisonnalité
 - Total hyménoptères
 - Catégorie d'hyménoptères
 - Catégorie de frelons
- Sexe
- Age: moyenne, médiane, étendue
- Classes d'âge: 0-5 ans, 6-19, 20-39, 40-59, 60 ans et plus: effectifs et pourcentages

Répartition géographique

- Répartition régionale total hyménoptères et catégorie d'hyménoptères, dont frelons et catégories de frelons (effectifs et pourcentages)
- Cartographie hyménoptères et frelons : répartition départementale (effectifs bruts) et incidence départementale, cumulée sur la période d'étude et par année

Étude des cas graves

- Répartition par catégorie d'hyménoptères et de frelons : effectifs et pourcentages
- Répartition annuelle des cas graves par catégories d'hyménoptères et de frelons : effectifs bruts et pourcentages de cas graves rapportés aux cas toutes gravités confondues
- Sexe et âge (tranches d'âge comparables aux cas toutes gravités confondues)
- Étude des circonstances : exposition professionnelle
- Symptomatologie : toxique ou allergique (dont syndrome de Kounis) ou les deux

³ Syndrome coronarien aigu d'origine allergique, survenant sur des artères saines ou pathologiques, et pouvant conduire à un arrêt cardiocirculatoire et au décès.

- Nombre de piqûres : 1 ; 2-10 ; 11-100 ; > 100
- Nombre de piqûres par catégories d'hyménoptères et de frelons
- Traitement : antihistaminiques, corticoïdes, adrénaline, oxygénothérapie, bronchodilatateurs, intubation
- Nombre de piqûres et traitement
- Localisation anatomique de la pigûre : tête, tronc, membre supérieur, membre inférieur

Exposition professionnelle

- Professionnels de la désinsectisation, apiculteurs ou autres professionnels
- Identification et description des cas

3.2.1.9 Analyse statistique

Les variables quantitatives ont été exprimées en moyenne ou médiane. Les valeurs qualitatives sont présentées en effectifs et en pourcentages.

Les analyses descriptives ont été réalisées à l'aide du logiciel R version 4.4.3.

Le traitement des données du système d'information des CAP (SICAP) a été réalisé par l'Anses.

3.2.2 Passages aux urgences issus du réseau OSCOUR®

3.2.2.1 Source de données

Depuis 2004, Santé publique France pilote le système SurSaUD® (Surveillance sanitaire des urgences et des décès). Ce système de surveillance sanitaire dit syndromique s'appuie sur la collecte quotidienne de données non spécifiques provenant des recours aux soins d'urgences (morbidité) et de données de mortalité. Ce système a été mis en place afin de détecter précocement un événement sanitaire inattendu ou inhabituel, assurer le suivi sanitaire des épidémies saisonnières et des grands rassemblements de population, évaluer l'impact sanitaire dans un contexte de situation exceptionnelle (climatique, accident industriel, attentats...).

Ce système collecte quotidiennement les données individuelles et pseudonymisées des passages dans les structures d'urgence (SU) hospitalière participant au réseau OSCOUR® (Organisation de la surveillance coordonnée des urgences). Dans un objectif de veille et de sécurité sanitaire, la transmission à Santé publique France des données du résumé de passage aux urgences (RPU) produites par les structures d'urgences a été rendue obligatoire par l'Arrêté du 24 juillet 2013 relatif au recueil et au traitement des données d'activité médicale produites par les établissements de santé publics ou privés ayant une activité de médecine d'urgence et à la transmission d'informations issues de ce traitement dans les conditions définies à l'article L. 6113-8 du code de la santé publique et dans un but de veille et de sécurité sanitaires. En 2014, le réseau comptait près de 500 SU, enregistrant 77% des passages aux urgences au niveau national. Le réseau s'est étendu progressivement, jusqu'à recevoir en 2023 les données de plus de 700 SU, enregistrant 97% des passages aux urgences nationaux.

Les données des recours aux urgences comportent des informations démographiques (date de naissance, sexe), administratives (date d'entrée et de sortie des urgences, établissement, mode de sortie (retour à domicile, hospitalisation ou décès) et des informations médicales (le diagnostic principal et le ou les diagnostics associés codés selon la classification internationale des maladies (CIM10)). Un total de 80% des passages aux urgences disposent d'au moins un diagnostic médical, principal ou associé, renseigné.

L'utilisation des données du réseau OSCOUR® a été autorisée par la CNIL dans sa délibération n° 2014-439 du 23 octobre 2014 autorisant Santé publique France (ex-Institut de veille sanitaire) à mettre en œuvre un traitement automatisé de données à caractère personnel, ayant pour finalité la surveillance sanitaire des urgences et des décès.

3.2.2.2 Identification des recours aux urgences pour piqûre d'hyménoptères

Lors de la première analyse des données de 2009 à 2013 (Viriot, Sinno-Tellier, et De Haro 2015), les passages pour piqûre d'hyménoptère dans les structures d'urgences du réseau OSCOUR® correspondaient aux passages pour lesquels le diagnostic médical principal ou un diagnostic médical associé était codé avec le code CIM10 T63.4 « effet toxique dû à un venin d'autres arthropodes hors scorpion, araignée ».

Dans la présente étude, les passages pour piqûre d'hyménoptère dans les structures d'urgences du réseau OSCOUR® correspondent aux passages pour lesquels le diagnostic médical principal ou un diagnostic médical associé était codé avec les codes CIM-10 T63.4 « effet toxique dû à un venin d'autres arthropodes hors scorpion, araignée » ou X23 « contacts avec des frelons, guêpes et abeilles ». Il n'est pas possible de distinguer les passages aux urgences pour piqûre de frelon de ceux pour piqûre d'autres hyménoptères.

Les passages identifiés avec le code T63.4 représentaient 96 % de l'ensemble des passages pour piqûre d'hyménoptère sur la période 2014-2023 (figure A4.1 en annexe 4). Le code X23 est principalement utilisé pendant les mois estivaux. La saisonnalité des passages aux urgences identifiés avec chacun de ces deux codes était comparable (figure A4.2 en annexe 4). L'identification des passages aux urgences à partir des codes T63.4 et X23 permet donc une analyse des passages aux urgences pour piqûre d'hyménoptère légèrement plus exhaustive que lors de la première étude, sans en changer les tendances saisonnières.

3.2.2.3 Champ de l'étude

L'étude repose sur les passages aux urgences survenus en France hexagonale entre le 1^{er} janvier 2014 et le 31 décembre 2023 inclus.

A partir de 2022, un changement dans les codes mis à disposition des urgentistes pour coder les diagnostics médicaux a été mis en place dans 56 structures d'urgences utilisant le logiciel métier Terminal Urgence (TU). Ce changement a rendu indisponibles les codes T63.4 et X23, entraînant une diminution marquée du nombre de passages aux urgences pour piqûre d'hyménoptère dans ces établissements à partir de 2022. Les 56 établissements utilisant le logiciel TU sont localisés principalement en Corse (N = 7/7 établissements dans la région) et en PACA (N = 27/51), et dans une moindre mesure en Nouvelle-Aquitaine (N = 11/73), Occitanie (N = 1/40).

De 2014 à 2021 (avant le changement de codage), les passages aux urgences pour piqûre d'hyménoptère dans les 56 établissements utilisant le logiciel TU représentaient 15,6 % de l'ensemble des passages pour piqûre d'hyménoptère de France hexagonale. La dynamique temporelle des passages aux urgences pour piqûre d'hyménoptère pour l'ensemble des SU et celle des SU n'utilisant pas le logiciel TU (excluant les 56 établissements) sont entièrement superposables (figure A4.3 en annexe 4).

Afin de permettre une analyse des tendances sur la période 2014-2023, les données de ces 56 structures d'urgences ont donc été exclues de l'ensemble de la période d'étude.

3.2.2.4 Plan d'analyse

Indicateurs

Afin de tenir compte de la montée en charge du système entre 2014 (76,8 % des passages aux urgences nationaux enregistrés par le réseau) et 2023 (97,4 %), les passages aux urgences pour piqûre d'hyménoptère ont été exprimés en taux pour 100 000 passages aux urgences toutes causes. Le nombre de passages aux urgences toutes causes correspond au nombre de passages pour lesquels au moins un diagnostic médical principal ou associé est renseigné.

Indicateurs de gravité

La gravité des passages aux urgences pour piqûre d'hyménoptère a été définie par les passages aux urgences pour piqûre d'hyménoptère suivis d'une hospitalisation à la sortie des urgences. Deux indicateurs ont été analysés :

- Le taux de passages aux urgences pour piqûre d'hyménoptère suivis d'une hospitalisation pour 100 000 passages toutes causes suivis d'une hospitalisation ;

- La proportion de passages aux urgences pour piqûre d'hyménoptère suivis d'une hospitalisation parmi les passages aux urgences pour piqûre d'hyménoptère.

Analyse

Dans un premier temps, l'évolution tendancielle entre 2014 et 2023 a été caractérisée en analysant les indicateurs agrégés à un pas de temps annuel.

Puis, la saisonnalité des recours aux urgences et des hospitalisations après passages aux urgences pour piqûre d'hyménoptère a été décrite à partir de l'évolution mensuelle des indicateurs entre 2014 et 2023.

Les analyses ont été déclinées tous âges et pour cinq classes d'âge : 0-5 ans, 6-19, 20-39, 40-59, 60 ans et plus, ainsi que tous sexes confondus et par sexe.

Enfin, les taux de passages aux urgences pour piqûre d'hyménoptère pour 100 000 passages toutes causes ont été calculés par département, cumulés sur l'ensemble de la période et pour chaque année de 2014 à 2023.

Le traitement des données du réseau OSCOUR® a été réalisé par Santé publique France.

3.2.3 Hospitalisations du programme de médicalisation des systèmes d'information (PMSI)

3.2.3.1 Source de données

Les données d'hospitalisations utilisées dans cette partie sont issues du Système national des données de santé (SNDS) de l'Assurance maladie. Le SNDS rassemble, pour l'ensemble des personnes résidant en France depuis plus de trois mois et affiliées à un régime de l'Assurance maladie (plus de 99% de la population) et avec une profondeur variable selon le type de données (jusqu'à 2005), plusieurs sources d'information⁴. Parmi elles, ont été utilisées pour cette étude les données hospitalières du Programme de médicalisation des systèmes d'information (PMSI) des secteurs de Médecine chirurgie obstétrique (MCO) provenant de l'Agence du traitement de l'information hospitalière (ATIH).

Tous les séjours hospitaliers des établissements de santé publics et privés sont remontés dans cette base de données, et comprennent, entre autres, les diagnostics (principal, relié, associé) des pathologies codées selon la CIM-10, les actes codés selon la CCAM et la nature des unités médicales du séjour. L'ensemble des données consolidées du PMSI (validées par les Agences Régionales de Santé) est disponible entre juin et juillet de l'année N+1.

3.2.3.2 Identification des patients hospitalisés pour piqûre d'hyménoptère

Les patients hospitalisés pour piqûre d'hyménoptère dans les secteurs MCO entre 2014 et 2023 correspondent à ceux présentant un diagnostic principal, associé ou relié correspondant aux codes CIM-10 T63.4 « effet toxique dû à un venin d'autres arthropodes hors scorpion, araignée » ou X23 « contacts avec des frelons, guêpes et abeilles ». Il n'est pas possible de distinguer les hospitalisations pour piqûre de frelon de celles pour piqûre d'autres hyménoptères.

Un évènement est ici défini comme un séjour incident pour l'un de ces deux codes. Si un patient a connu plusieurs séjours séparés par un délai supérieur à 15 jours pour ces mêmes

_

⁴ https://www.snds.gouv.fr/SNDS/Accueil

diagnostics, ils ont été considérés comme deux séjours incidents distincts, après consultation des experts.

3.2.3.3 Plan d'analyse

Indicateurs

L'analyse repose sur :

- Le nombre d'hospitalisations en MCO pour piqûre d'hyménoptère ;
- Le nombre d'hospitalisations pour piqûre d'hyménoptère en service de réanimation, soins intensifs ou soins continus (REA/SI/SC);
- La proportion d'hospitalisations pour piqûre d'hyménoptère en REA/SI/SC parmi les hospitalisations pour piqûre d'hyménoptère en MCO.

Indicateurs de gravité

Les hospitalisations pour piqûre d'hyménoptère en REA/SI/SC constituent un critère de gravité. Le pourcentage d'hospitalisation en REA/SI/SC (par rapport aux hospitalisations) est un indicateur de gravité.

Analyse

A l'instar de l'analyse produite sur les passages aux urgences, l'évolution temporelle entre 2014 et 2023 a été caractérisée en analysant les indicateurs agrégés à un pas de temps annuel. Puis, la saisonnalité des hospitalisations pour piqûre d'hyménoptère a été décrite à partir de l'évolution mensuelle entre 2014 et 2023 des indicateurs.

Les analyses ont été déclinées tous âges confondus et pour cinq classes d'âge : 0-5 ans, 6-19, 20-39, 40-59, 60 ans et plus, ainsi que tous sexes confondus et par sexe.

Enfin, le nombre d'hospitalisations pour piqûre d'hyménoptère en MCO a été agrégé par département, cumulés sur l'ensemble de la période et pour chaque année de 2014 à 2023.

Ces résultats et tendances ont été comparés aux résultats des analyses des hospitalisations après passage aux urgences issues des données du réseau OSCOUR®.

Le traitement des données du PMSI a été réalisé par Santé publique France.

3.2.4 Mortalité à partir des certificats de décès (CépiDc)

3.2.4.1 Source de données

La statistique annuelle des causes médicales de décès est produite par le Centre d'épidémiologie sur les causes médicales de décès (CépiDc) de l'Inserm (Institut National de la Santé et de la Recherche Médicale) à partir des volets médicaux des certificats de décès renseignés par le médecin constatant le décès. Elle documente les causes de décès des personnes décédées en France.

Les causes médicales de décès sont disponibles sous deux formes :

- Sur l'ensemble de la période d'analyse (2014-2023): sous la forme des textes libres exprimés par le médecin sur le certificat de décès. Il n'est pas possible d'identifier la cause initiale à l'origine du processus morbide ayant conduit au décès;

- Sur la période de 2014 à 2021 : les causes médicales de décès ont été codées par l'Inserm-CépiDc selon la CIM-10. À chaque entité nosologique (maladie, traumatisme etc.) mentionnée sur le certificat est attribué un code CIM-10. La cause initiale de décès est définie, en appliquant les règles de la CIM-10, comme étant la maladie, le traumatisme, ou les circonstances en cas de mort violente, à l'origine du processus morbide ayant entraîné le décès.

3.2.4.2 Identification des décès associés à une piqûre d'hyménoptère

Sur la période 2014-2022, les décès pour lesquels la cause initiale ou l'une des causes associées étaient codées avec les codes CIM-10 X23 « Contact avec des frelons, guêpes et abeilles » et T63.4 « effet toxique dû à un venin d'autres arthropodes hors scorpion, araignée » ont été sélectionnés.

Parallèlement, un algorithme identifiant les certificats contenant une mention de « PIQÛRE » ou « INSECTE » ou « HYMENOPTERE » ou « FRELON » ou « ABEILLE » ou « GUEPE » dans les textes libres des causes de décès a été développé. Il a été validé en le confrontant aux certificats de décès codés en CIM-10.

Une revue systématique des causes médicales exprimées dans les certificats de décès identifiés soit à partir des codes CIM-10, soit à partir de l'algorithme, a été effectuée.

Ont été exclus de l'analyse :

- Les certificats de décès dont les causes mentionnaient une piqûre d'insecte en tant qu'antécédent, sans que celle-ci ne soit impliquée dans le processus ayant conduit au décès ;
- Les certificats de décès dont les causes mentionnaient une piqûre autre que celle d'un hyménoptère (piqûre de moustique, méduse, fourmi, reptile, scolopendre) ou une piqûre par une aiguille (acte médical, toxicomanie, sans précision...).

3.2.4.3 Plan d'analyse

L'étude repose sur les décès survenus en France hexagonale entre le 1^{er} janvier 2014 et le 31 décembre 2023 inclus.

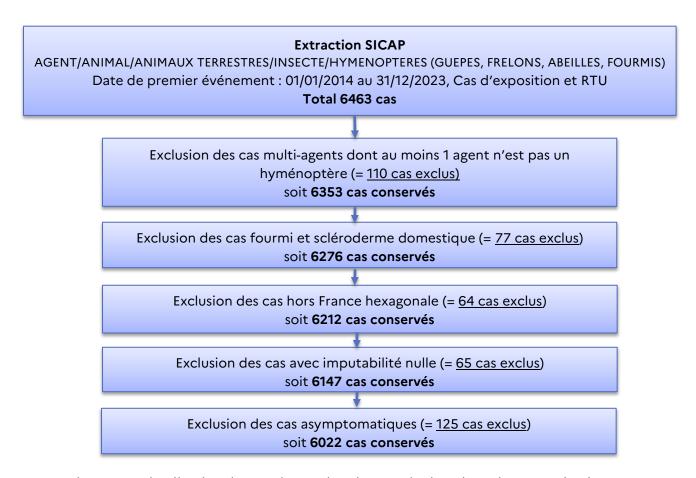
Indicateurs

Sur la période 2014-2023, le nombre total de décès est présenté, ainsi que le nombre de décès selon la catégorie d'hyménoptère :

- nombre de décès avec une mention de « frelon » dans les causes médicales en texte
- nombre de décès avec une mention d'un autre hyménoptère précisé (guêpe, abeille),
- nombre de décès avec une mention d'hyménoptère non précisé,
- nombre de décès avec une mention d'insecte sans précision,
- nombre de décès avec une mention de piqûre sans précision.

Les indicateurs ont été déclinés :

- par année,
- par classe d'âge : 0-5 ans, 6-19, 20-39, 40-59, 60 ans et plus ;
- par sexe.


Le traitement des données du CépiDc a été réalisé par Santé publique France.

4 Résultats

4.1 Étude des cas enregistrés par les Centres antipoison

4.1.1 Diagramme de sélection des cas

Les étapes de sélection des cas d'envenimation par des frelons à pattes jaunes et autres hyménoptères enregistrés par les CAP sont présentées dans la figure 3.

Figure 3 Diagramme de sélection des cas d'envenimation par des hyménoptères enregistrés par les CAP. 2014-2023. France hexagonale. Source : SICAP.

4.1.2 Répartition temporelle

4.1.2.1 Répartition annuelle

Au total, 6022 envenimations par un hyménoptère (hors fourmi et scléroderme domestique) ont été rapportées aux CAP du 1er janvier 2014 au 31 décembre 2023.

Le nombre d'envenimations par des hyménoptères, qui était en moyenne de 602 par an, fluctuait entre 2014 et 2023, sans montrer de tendance à la hausse ou à la baisse (figure 4). Les années 2015, 2017, 2018 et 2020 étaient celles avec le plus de cas (avec un pic à 872 cas en

2018), alors que les années 2021 et 2023 étaient celles avec le moins de cas (inférieur à 450 cas par an).

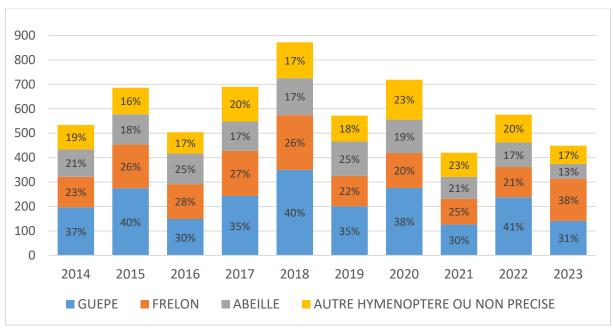

De même, le pourcentage de cas impliquant un hyménoptère, sur le nombre de cas tous agents confondus et répondant aux mêmes critères de sélection, égal à 0,76 % sur l'ensemble de la période d'étude, ne semblait pas suivre, lui non plus, de tendance particulière entre 2014 et 2023. Ce pourcentage suivait et se superposait presque parfaitement à l'évolution du nombre de cas brut impliquant un hyménoptère.

Figure 4 Répartition annuelle des envenimations par des hyménoptères (en bleu) et pourcentage de ces envenimations par rapport à tous les cas enregistrés par les CAP (en orange). 2014-2023. France hexagonale. Source : SICAP.

Sur la période 2014 – 2023, 37 % des envenimations par des hyménoptères étaient dus à des guêpes, 25 % à des frelons, 19 % à des abeilles et 19 % à une espèce non identifiée ou une autre espèce d'hyménoptère ou à plusieurs catégories d'hyménoptères.

La répartition par catégorie d'hyménoptère restait stable entre 2014 et 2023 (figure 5): entre 30 % et 41 % des envenimations étaient dues à des guêpes, entre 20 % et 28 % des envenimations étaient dues à des frelons (avec une exception en 2023 où 38 % des envenimations étaient dues à des frelons), entre 13 % et 25 % des envenimations étaient dues à des abeilles, et entre 16 % et 23 % étaient dues à une espèce non identifiée ou une autre espèce d'hyménoptère ou à plusieurs catégories d'hyménoptères.

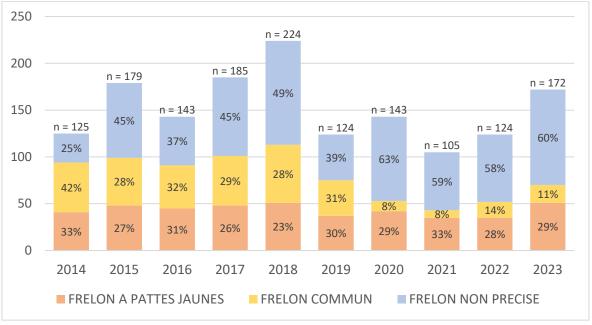


Figure 5 Répartition annuelle des envenimations par des hyménoptères enregistrées par les CAP par catégorie d'hyménoptères. 2014-2023. France hexagonale. Source : SICAP.

Sur la période 2014 – 2023, 28 % des envenimations par des frelons étaient dues à des frelons à pattes jaunes, 24 % à des frelons communs et 48 % à des frelons non précisés.

Par catégorie de frelons, entre 2014 et 2019, les envenimations par des frelons non précisés entre 25 et 49 % des envenimations par des frelons, celles par des frelons communs entre 28 et 42 %, et celles par des frelons à pattes jaunes représentaient entre 23 et 33 % (figure 6).

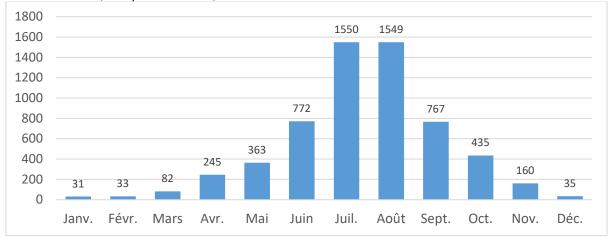
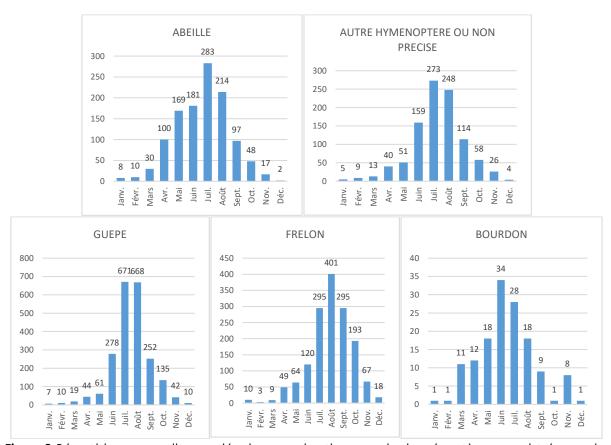

Un changement est noté à partir de 2020, avec une diminution marquée des envenimations par des frelons communs (frelons européens), au profit des frelons non précisés : les envenimations par frelon non précisé représentaient entre 58 et 63 % des envenimations par des frelons, celles par frelon commun représentaient entre 8 et 14 % et celles par des frelons à pattes jaunes représentaient entre 28 et 33 %.

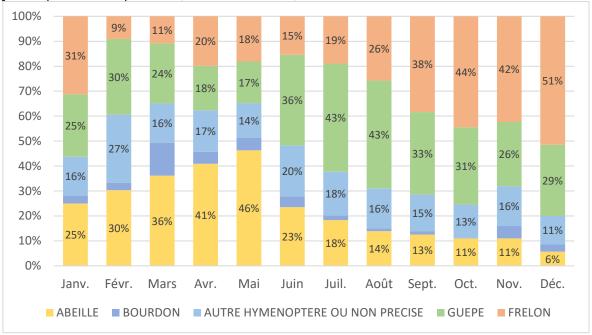
Figure 6 Répartition annuelle des envenimations par catégorie de frelon enregistrées par les CAP. 2014-2023. France hexagonale. Source : SICAP.


4.1.2.2 Répartition mensuelle cumulée

Les mois de juillet et août, avec des valeurs très proches, étaient les mois avec le plus d'envenimations par des hyménoptère (26% des envenimations annuelles pour chacun) (figure 7). Venaient ensuite les mois de juin et septembre, avec là aussi, des valeurs très proches pour ces deux mois (13% pour chacun).

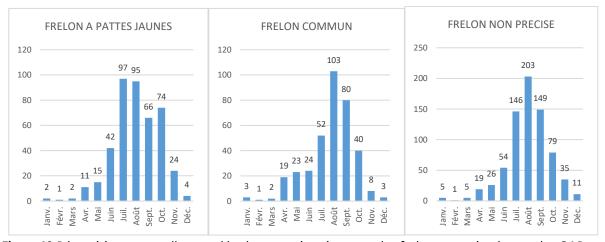
Figure 7 Répartition cumulée par mois des envenimations par hyménoptères enregistrées par les CAP. 2014-2023. France hexagonale. Source : SICAP.

Pour les envenimations par des guêpes, bourdons ou autres hyménoptères, les mois avec le plus d'envenimations étaient juillet et août (figure 8). Venaient ensuite les mois de juin et septembre. Pour les envenimations par des abeilles, les mois de juillet et août étaient suivis de mai et juin. Pour les envenimations par des frelons, le mois avec le plus d'envenimations était août, suivi de juillet et septembre avec des valeurs identiques et enfin octobre.


Figure 8 Répartition mensuelle cumulée des envenimations par des hyménoptères enregistrées par les CAP par catégorie d'hyménoptères. 2014-2023. France hexagonale. Effectifs. Source : SICAP.

On retrouve des résultats concordants en comparant les répartitions des envenimations par catégorie d'hyménoptères et pour chaque mois (figure 9).

En effet, alors que les envenimations par des abeilles représentaient 19 % des envenimations par des hyménoptères sur toute l'année, celles-ci atteignaient 36 % des envenimations par des hyménoptères en mars, 41 % en avril et 46 % en mai.


De même, les envenimations par des guêpes qui représentaient 37 % des envenimations par des hyménoptères sur toute l'année, étaient les envenimations majoritaires en juin (36 % des envenimations par des hyménoptères), juillet (43 %) et août (43 %).

Enfin, alors que les envenimations par des frelons représentaient 25 % des envenimation par des hyménoptères sur toute l'année, celles-ci atteignaient 38 % des envenimations par des hyménoptères en septembre, 44 % en octobre, 42 % en novembre et 51 % en décembre.

Figure 9 Répartition mensuelle cumulée des envenimations par des hyménoptères enregistrées par les CAP par catégorie d'hyménoptères. Pourcentages. 2014-2023. France hexagonale. Source : SICAP.

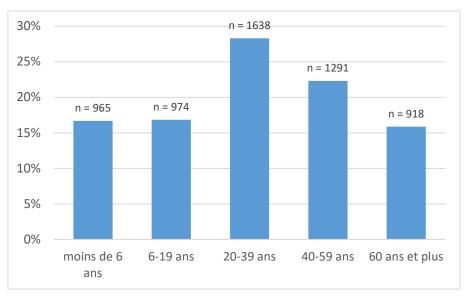

Pour les envenimations par des frelons à pattes jaunes, juillet était le mois avec le plus de cas, suivi des mois d'août, octobre puis enfin septembre (figure 10). Pour les envenimations par des frelons communs et pour celles par des frelons sans précision, août était le mois avec le plus de cas, suivi de septembre puis de juillet.

Figure 10 Répartition mensuelle cumulée des envenimations par des frelons enregistrées par les CAP par catégorie de frelons. Pourcentages. 2014-2013. France hexagonale. Source : SICAP.

4.1.3 Répartition par âge et par sexe

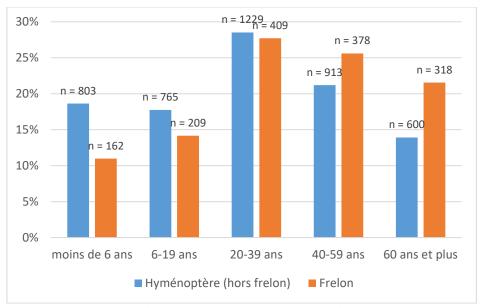

Les données sur le sexe et l'âge étaient inconnues pour 0,4 % (23/6022) et 3,9 % (234/6022) des cas respectivement. Le sexe ratio (H/F) était égal à 1,1 (52,5 % d'hommes et 47,5 % de femmes). Les patients étaient âgés de 9 jours à 104 ans, l'âge moyen était égal à 33,0 ans et l'âge médian à 32 ans. Des enfants de moins de 1 an étaient impliqués dans 1,6 % des cas (94/5788). Toutes les classes d'âges étaient concernées par les envenimations par des hyménoptères. La classe d'âge 20-39 ans était celle avec le plus d'envenimations (28 %) (figure 11).

Figure 11 Nombres et pourcentages d'envenimations tous hyménoptères confondus enregistrées par les CAP par classe d'âges. 2014-2023. France hexagonale. Source : SICAP.

La répartition par sexe était différente pour les envenimations par des frelons et par des hyménoptères hors frelon : les envenimations par des frelons toutes espèces et par les autres hyménoptères (hors frelon), concernaient respectivement 60,5 % et 49,9 % d'hommes

De même, la répartition par classe d'âge pour les envenimations par des frelons et celle pour les envenimations par des hyménoptères (hors frelon) étaient différentes (figure 12). Comparativement aux envenimations par d'autres hyménoptères qu'un frelon, les personnes âgées de moins de 20 ans étaient moins concernées par les envenimations par des frelons alors que les personnes âgées de plus de 39 ans l'étaient plus. Les personnes piquées par un frelon étaient âgées en moyenne de 49,8 ans tandis que celles piquées par un autre hyménoptère qu'un frelon étaient âgées en moyenne de 31,2 ans.

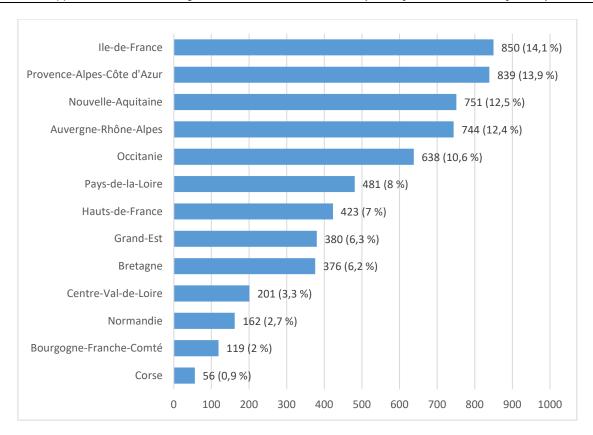
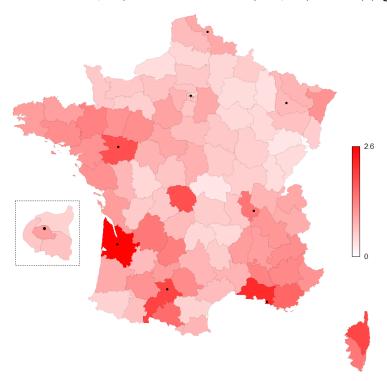
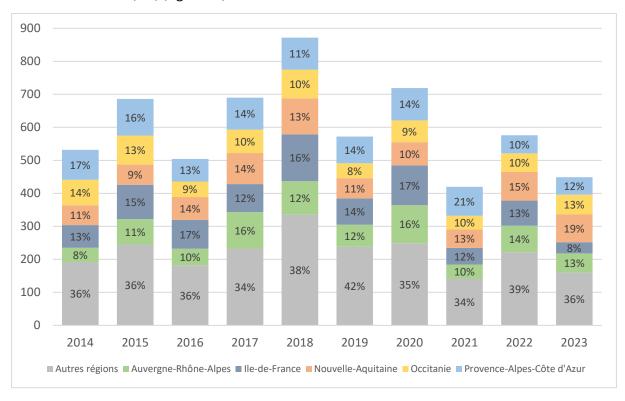


Figure 12 Répartition des envenimations par des hyménoptères enregistrées par les CAP par classe d'âges (tous hyménoptères confondus versus uniquement frelons). Pourcentages et effectifs. 2014-2023. France hexagonale. Source : SICAP.

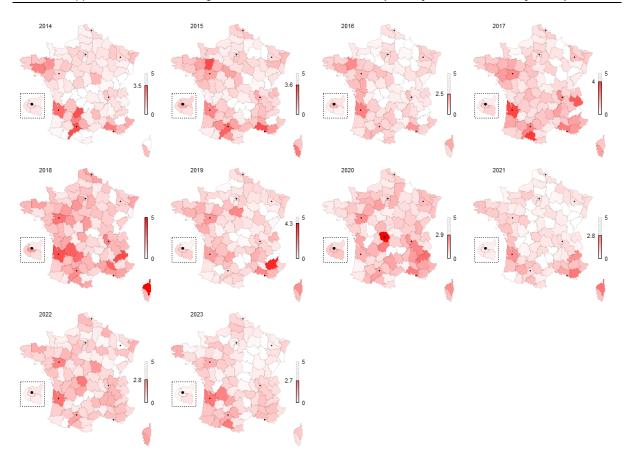
4.1.4 Répartition géographique


4.1.4.1 Envenimation par des hyménoptères

Si toutes les régions étaient représentées, les envenimations par des hyménoptères étaient observées plus particulièrement en Ile-de-France (14 %, principalement dans les Yvelines, la Seine-et-Marne et à Paris), en Provence-Alpes-Côte d'Azur (14 %, principalement dans les Bouches-du-Rhône, le Var et les Alpes-Maritimes), en Nouvelle-Aquitaine (13 %, principalement en Gironde), en Auvergne-Rhône-Alpes (12 %, principalement dans le Rhône et en Isère) et en Occitanie (11 %, principalement en Haute-Garonne) (figure 13).


Figure 13 Répartition des envenimations par des hyménoptères enregistrées par les CAP par région. 2014-2023. France hexagonale. Source : SICAP.

L'incidence (pour 10⁵ habitants) des envenimations par des hyménoptères par département entre 2014 et 2023 variait de 0,07 (Territoire de Belfort) à 2,57 (Gironde) (figure 14).


Figure 14 Incidence (pour 100 000 habitants) des envenimations par des hyménoptères enregistrées par les CAP par département. 2014-2023. France hexagonale. Source : SICAP. Les points noirs représentent la localisation des CAP.

L'évolution annuelle des pourcentages des envenimations par des hyménoptères était stable entre les différentes régions de 2014 à 2023, hormis pour la Nouvelle-Aquitaine où le pourcentage semblait augmenter en 2023 (19%) et pour l'Ile-de-France où le pourcentage semblait diminuer (8%) (figure 15).

Figure 15 Répartition annuelle des envenimations par des hyménoptères enregistrées par les CAP par région. 2014-2023. France hexagonale. Source : SICAP.

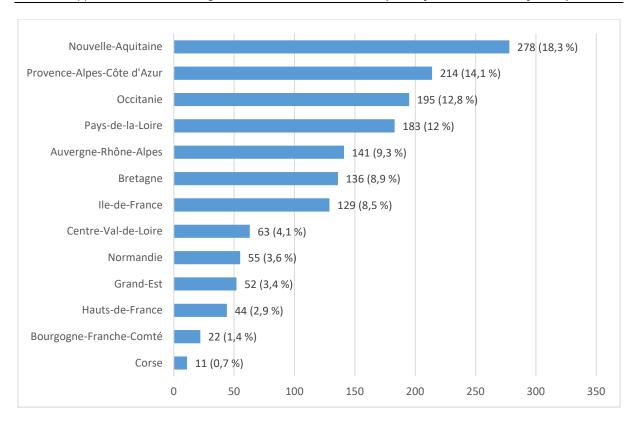

La répartition des envenimations par des hyménoptères sur le territoire hexagonal ne semblait pas montrer d'extension géographique entre 2014 et 2023 (figure 16). L'évolution spatiotemporelle des envenimations par des hyménoptères de 2014 à 2023 montrait que chaque département était concerné au moins une année par une pigûre d'hyménoptère (figure 16).

Figure 16 Incidence (pour 100 000 habitants) des envenimations par des hyménoptères enregistrées par les CAP par département et par année. 2014-2023. France hexagonale. Source : SICAP. Les points noirs représentent la localisation des CAP.

4.1.4.2 Envenimation par des frelons

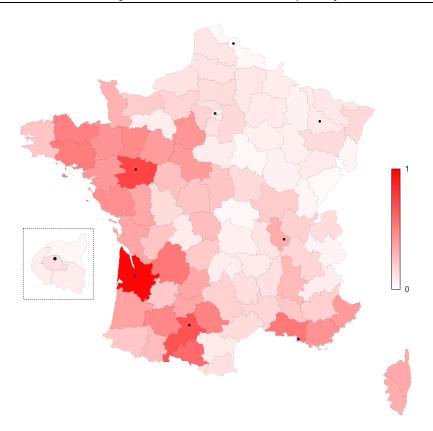
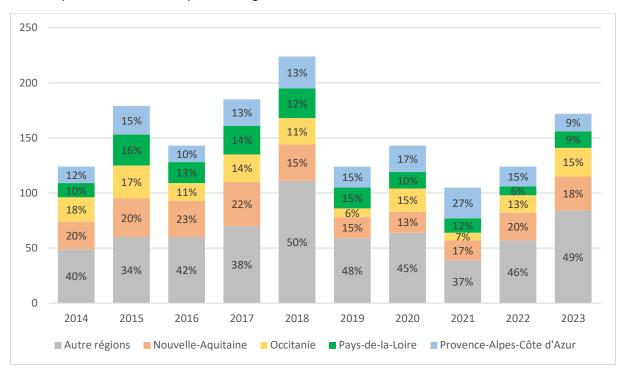

Les envenimations par des frelons étaient observées plus particulièrement en Nouvelle-Aquitaine (18 %, principalement en Gironde), en Provence-Alpes-Côte d'Azur (14 %, principalement dans les Bouches-du-Rhône, le Var et les Alpes-Maritimes), en Occitanie (13 %, principalement en Haute-Garonne) et dans les Pays-de-la-Loire (12 %, principalement dans le Maine-et-Loire et la Loire-Atlantique) (figure 17).

Figure 17 Répartition des envenimations par des frelons enregistrées par les CAP par région. 2014-2023. France hexagonale. Source : SICAP.


Seul le Territoire de Belfort ne recensait aucune envenimation par des frelons (toutes espèces) entre 2014 et 2023.

L'incidence (pour 100 000 habitants) des envenimations par des frelons par département entre 2014 et 2023 variait de 0,02 (Doubs) à 0,98 (Gironde) (figure 18).

Figure 18 Incidence (pour 100 000 habitants) des envenimations par des frelons enregistrées par les CAP par département. Source : SICAP. Les points noirs représentent la localisation des CAP.

La répartition des envenimations par des frelons dans les principales régions concernées restait stable de 2014 et 2023 : entre 9 et 17 % pour la Provence-Alpes-Côte d'Azur (avec un pic à 27 % en 2021), entre 6 et 15 % pour les Pays-de-la-Loire, entre 6 et 18 % pour l'Occitanie et entre 14 et 23 % pour la Nouvelle-Aquitaine (figure 19).

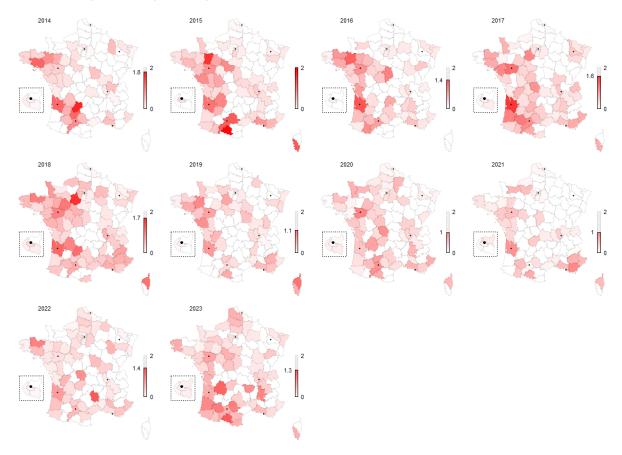
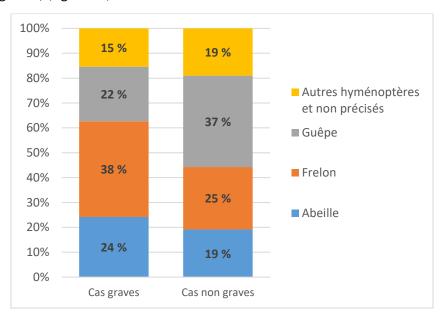


Figure 19 Répartition annuelle des envenimations par des frelons enregistrées par les CAP par région. 2014-2023. France hexagonale. Source : SICAP.

De même que pour la répartition des envenimations par des hyménoptères, celle des envenimations par des frelons sur le territoire ne semblait pas suivre d'évolution particulière de 2014 à 2023 (figure 20).

Le département avec le plus d'envenimations par des frelons sur une année était la Gironde avec 25 envenimations en 2017.

Enfin, seuls quelques départements étaient systématiquement concernés chaque année par les envenimations par des frelons : les Alpes-Maritimes, les Bouches-du-Rhône, la Charente-Maritime, la Gironde, la Haute-Garonne, l'Ille-et-Vilaine, la Loire-Atlantique, le Maine-et-Loire, le Morbihan, le Rhône, le Tarn, la Vendée et les Yvelines.


Figure 20 Incidence (pour 100 000 habitants) des envenimations par des frelons enregistrées par les CAP par département et par année. 2014-2023. France hexagonale. Source : SICAP. Les points noirs représentent la localisation des CAP.

4.1.5 Étude des cas graves

Parmi les 6 022 envenimations par des hyménoptères enregistrés dans le SICAP entre 2014 et 2023, 91 étaient graves (1,5 %), soit environ 9 par an.

4.1.5.1 Catégories d'hyménoptères

Les envenimations par des frelons étaient responsables de 38 % des cas graves (contre 25 % des cas non graves) (figure 21).

Figure 21 Répartition des envenimations graves et non graves enregistrées par les CAP par catégorie d'hyménoptère. 2014-2023. France hexagonale. Source : SICAP.

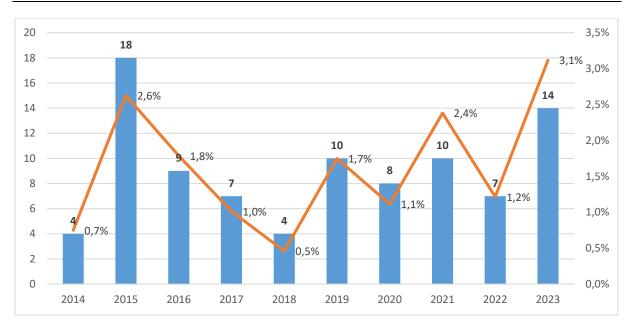

Le risque que l'envenimation soit grave était également plus élevé en cas de piqûre de frelon (2,3%) qu'en cas de piqûre par un autre hyménoptère (tableau II).

Tableau II Pourcentage d'envenimations graves par catégorie d'hyménoptère enregistrées par les CAP. 2014-2023. France hexagonale. Source : SICAP.

	Cas graves Nombre	Cas non graves Nombre	Pourcentage de cas graves
Frelon	35	1489	2,3%
Abeille	22	1137	1,9%
Autres hyménoptères et non précisés	14	1128	1,2%
Guêpe	20	2177	0,9%

4.1.5.2 Répartition annuelle

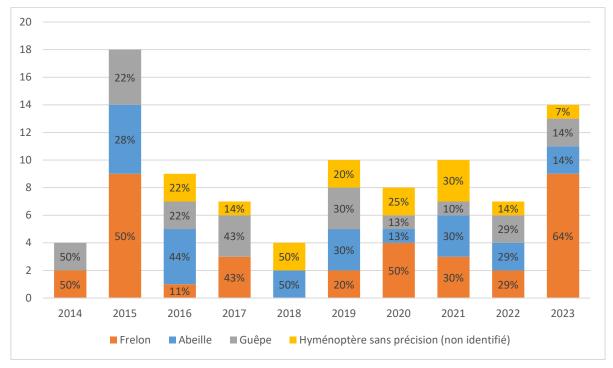

Le nombre d'envenimations graves en 2023 (N=14) était supérieur à celui des 7 années précédentes (figure 22). Un pic d'envenimations graves avait cependant été observé en 2015 (N=18) sur l'ensemble de la période d'étude (2014-2023).

Figure 22 Répartition annuelle des envenimations graves par des hyménoptères (en bleu) et pourcentage de ces envenimations graves par rapport aux envenimations par des hyménoptères toutes gravités confondues (en orange) enregistrées par les CAP. 2014-2023. France hexagonale. Source : SICAP.

4.1.5.3 Répartition annuelle par catégorie d'hyménoptère

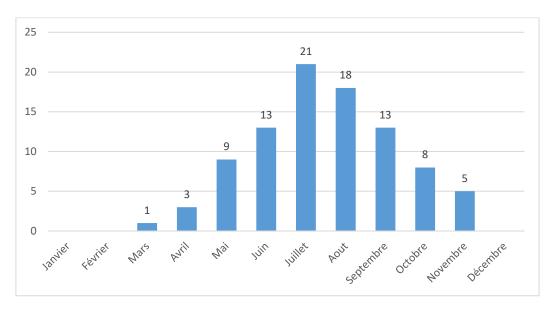
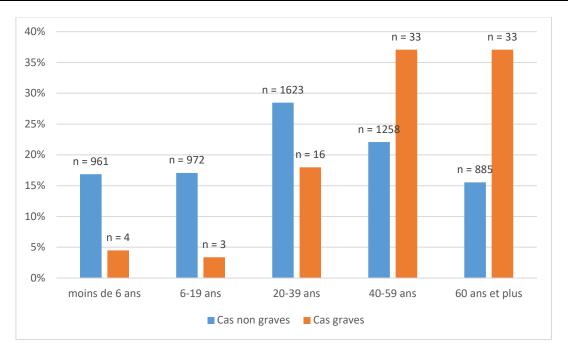

La répartition des envenimations graves par catégorie d'hyménoptère ne semblait pas suivre de tendance de 2014 à 2023 (figure 23). Le nombre d'envenimations graves par des frelons (ainsi que sa proportion par rapport à tous les hyménoptères) atteignait sa valeur la plus élevée en 2023 (64 %).

Figure 23 Répartition annuelle des envenimations graves par des hyménoptères enregistrées par les CAP par catégorie d'hyménoptère. 2014-2023. France hexagonale. Source : SICAP.

4.1.5.4 Saisonnalité

Les mois de juillet puis août, avec des valeurs assez proches (respectivement 21 et 18 envenimations), étaient les mois avec le plus d'envenimations graves par des hyménoptères. Venaient ensuite les mois de septembre et juin (avec 13 envenimations pour chacun de ces mois) puis mai et octobre, avec des valeurs très proches (respectivement 9 et 5 envenimations) (figure 24).

Figure 24 Répartition mensuelle cumulée des envenimations graves par des hyménoptères enregistrées par les CAP. 2014-2023. France hexagonale. Source : SICAP.


4.1.5.5 Sexe

Les hommes étaient plus souvent victimes d'envenimations graves : ils représentaient 69% des envenimations graves versus 52,2 % des non graves.

4.1.5.6 Age

Les données sur l'âge étaient inconnues pour 2,2 % (2/91) des envenimations graves. Les patients étaient âgés de 11 mois à 94 ans, l'âge moyen (± écart-type) était égal à 47,8 ans (± 20,1) et l'âge médian à 51 ans. Les autres enfants âgés de moins de 6 ans avaient 2 ans (1 patient) et 3 ans (2 patients). Enfin, environ 73 % des envenimations graves concernaient des personnes de plus de 39 ans (figure 25).

Les envenimations graves concernaient principalement des personnes adultes (et plus spécifiquement des personnes de plus de 39 ans) et très peu les enfants et les adolescents (figure 25).

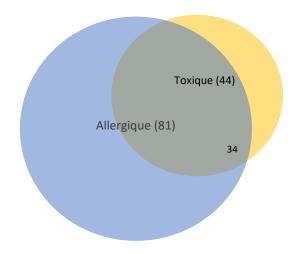


Figure 25 Répartition des envenimations graves et non graves tous hyménoptères confondus enregistrées par les CAP par classe d'âge. Pourcentages et effectifs. 2014-2023. France hexagonale. Source : SICAP.

4.1.5.7 Symptomatologie

La symptomatologie des envenimations graves était majoritairement de type allergique (89 %) et de type toxique pour presque la moitié (48 %) (figure 26). Elle était à la fois allergique et à toxique dans un peu plus d'un tiers des cas (37 %).

Un syndrome de Kounis a été décrit dans 8 envenimations graves.

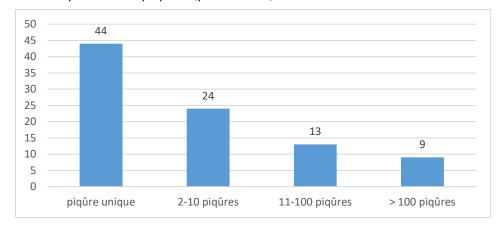
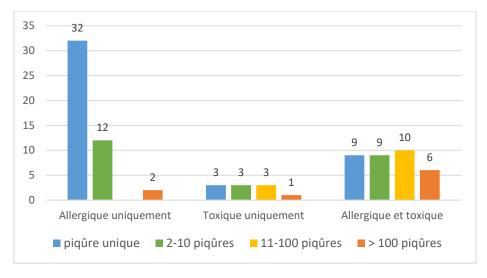


Figure 26 Répartition des envenimations tous hyménoptères confondus enregistrées par les CAP par symptomatologie. 2014-2023. France hexagonale. Source : SICAP.

4.1.5.8 Nombre de piqûres pour les envenimations graves


Quand l'information sur le nombre de piqûres était connue (90/91), une seule piqûre avait suffi dans près de la moitié des cas (48 %) pour causer une envenimation grave (figure 27).

Un nombre très important de piqûres (plus de 100) était retrouvé dans 10 % des cas.

Figure 27 Répartition des envenimations graves par des hyménoptères enregistrées par les CAP par nombre de piqûres. 2014-2023. France hexagonale. Source : SICAP.

Les envenimations graves avec une symptomatologie uniquement allergique étaient principalement associées à un nombre de piqûres d'hyménoptères faible : pour 70 % de ces envenimations il y avait une seule piqûre et pour 96 % il y avait moins de 10 piqûres (figure 28). Il ne semblait pas y avoir de nombre de piqûres prépondérant en cas de symptomatologie toxique seule ou en cas de symptomatologie allergique et toxique.

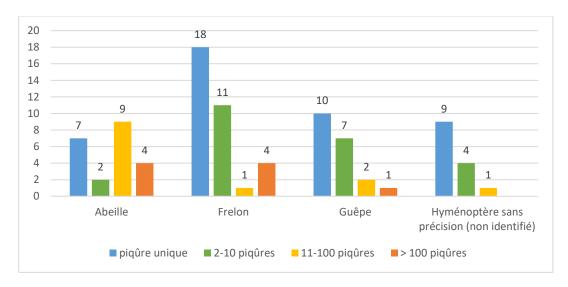


Figure 28 Répartition des envenimations graves tous hyménoptères confondus enregistrées par les CAP par symptomatologie et nombre de piqûres. 2014-2023. France hexagonale. Source : SICAP.

Une seule piqûre avait suffi pour causer une envenimation grave dans environ la moitié des envenimations graves par des frelons (53 %) ou des guêpes (50 %) et un tiers des envenimations graves par des abeilles (32 %) (figure 29).

Pour les frelons, guêpes et hyménoptères sans précision, plus de 75 % de ces envenimations étaient associées à moins de 11 piqûres (figure 29).

A noter, 4 envenimations graves par des frelons d'espèce non identifiée (ayant conduit à 2 décès) et 1 envenimation grave par une guêpe étaient dues à plus de 100 piqûres. Presque 60 % (13/22) des envenimations graves par des abeilles étaient associées à plus de 10 piqûres.

Figure 29 Répartition des envenimations graves enregistrées par les CAP selon la catégorie d'hyménoptères et le nombre de piqûres. 2014-2023. France hexagonale. Source : SICAP.

4.1.5.9 Localisation de la piqûre

L'information concernant la localisation de la piqûre était disponible dans 85 % des cas) : des piqûres se trouvaient au niveau de la tête et du cou dans 62 % des envenimations graves (48/77), au niveau des membres supérieurs dans 47 % des envenimations graves (36/77), au niveau du tronc dans 23 % (18/77) et au niveau des membres inférieurs dans 29 % (22/77) (tableau III). Huit personnes ont été piquées sur le corps entier (tête et cou, membres supérieurs, tronc et membres inférieurs), par des abeilles pour 5 cas, des frelons pour deux et des guêpes pour le dernier cas.

Enfin, dans presque 30 % des envenimations graves (23/77), les piqûres étaient uniquement localisées au niveau de la tête ou du cou.

Tableau III Localisation des piqûres des envenimations graves enregistrées par les CAP. 2014-2023. France hexagonale. Source : SICAP.

	Nombre d'envenimations *	%
Tête et cou	48	62
Membres supérieurs	36	47
Tronc	18	23
Membres inférieurs	22	29
Total (nombre de cas)	77	

^{*}plusieurs localisations possibles pour une même envenimation

4.1.5.10 Décès

Parmi ces 91 envenimations graves, 11 ont entraîné un décès, dû soit à un frelon d'espèce non identifiée (4), un hyménoptère non identifié (4), une guêpe (2) et une abeille (1). Il s'agissait de 7 hommes et 4 femmes âgés de 33 à 82 ans.

Presque tous (10/11) étaient associés à une symptomatologie allergique (dont 7 uniquement allergique). L'imputabilité était probable (I3) pour 8 décès et très probable (I4) pour 3 décès.

L'année 2015 était celle avec le plus de décès (5 décès), les 6 autres décès étant répartis sur les autres années. Trois personnes étaient décédées avant l'arrivée des secours médicaux.

4.1.5.11 Prise en charge médicale des envenimations graves

En excluant les 3 décès avant prise en charge médicale et lorsque l'information sur la prise en charge médicale était disponible (99 %), 87 % des personnes concernées par des envenimations graves ont été hospitalisées : presque la moitié a été admise aux urgences (UHCD incluse) (47 %) et 40 % en soins intensifs ou réanimation (tableau IV).

Tableau IV Prise en charge médicale des envenimations graves par des hyménoptères enregistrées par les CAP. 2014-2023. France hexagonale. Source : SICAP.

	Nombre d'envenimations	%
Soins intensifs ou réanimation	35	40
Urgences (dont UHCD)	41	47
Consultation d'un médecin généraliste	7	8
Conseil de se rendre aux urgences mais perdu de vue	2	2
Conseil de se rendre aux urgences mais refus	2	2
Total	87	100

De l'adrénaline avait été administrée dans 60 % des cas graves, et les patients ont dû être intubés pour assistance ventilatoire dans 16 % des envenimations graves (tableau V).

Tableau V Prise en charge médicale des envenimations graves par des hyménoptères enregistrées par les CAP. 2014-2023. France hexagonale. Source : SICAP.

	Nombre d'envenimations *	
Antihistaminiques	57 / 71**	80
Corticoïdes	53 / 72**	74
Adrénaline	43 / 72**	60
Oxygène	31 / 72**	43
Bronchodilatateurs	10 / 72**	14
Intubation	12 / 77**	16

^{*}plusieurs traitements possibles pour une même envenimation

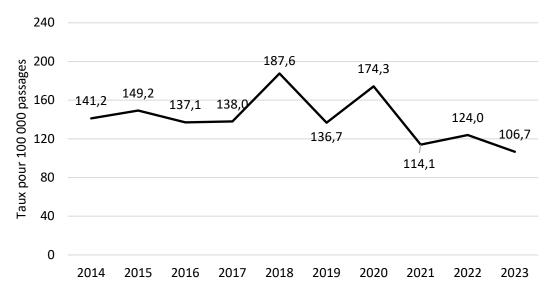
4.1.5.12 Exposition professionnelle

Parmi ces 91 envenimations graves, 14 étaient survenues dans un contexte professionnel. Il s'agissait de 12 hommes et 2 femmes, âgés de 26 à 69 ans. Un décès a été observé.

Un peu plus de la moitié de ces personnes exerçaient une profession à risque élevé d'exposition avec des hyménoptères : 5 envenimations (toutes causées par des abeilles) concernaient des apiculteurs, 3 (toutes causées par des frelons à pattes jaunes) des artisans travaillant pour des entreprises de destruction de nid de frelon à pattes jaunes.

Pour les autres, on retrouvait un agriculteur, un dépanneur et un bûcheron. La profession n'était pas précisée pour les 3 derniers cas.

^{**}nombre d'envenimations pour lesquelles l'information était disponible


4.2 Passages aux urgences pour piqûre d'hyménoptère

4.2.1 Evolution temporelle

4.2.1.1 Evolution annuelle

Entre le 1^{er} janvier 2014 et le 31 décembre 2023, 179 141 passages aux urgences pour piqûre d'hyménoptère ont été enregistrés via le réseau OSCOUR®, soit un taux sur la période de 139,3 passages aux urgences pour piqûre d'hyménoptère pour 100 000 passages toutes causes.

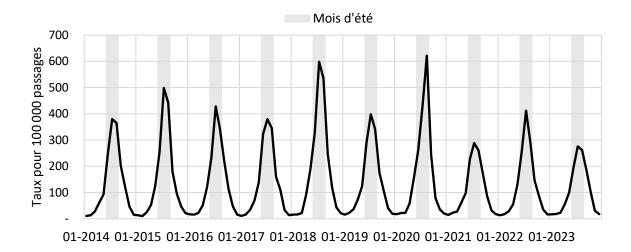
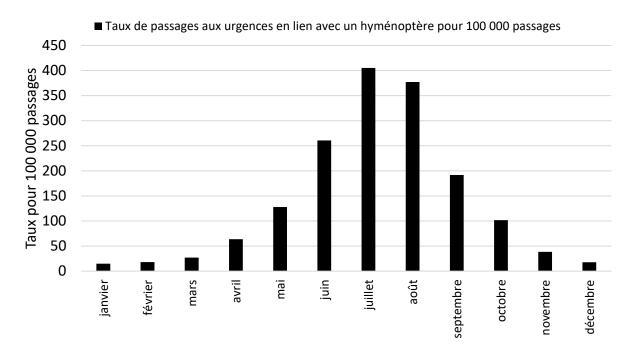

Le taux annuel de passages aux urgences pour piqûre d'hyménoptère pour 100 000 passages toutes causes présentait une légère tendance à la diminution, passant de 141,2 en 2014 à 106,7 en 2023. Deux années présentaient une rupture par rapport à cette tendance : 2018 (taux de 187,6) et 2020 (taux de 174,3) (figure 30).

Figure 30 Taux annuel de passages aux urgences pour piqûre d'hyménoptère pour 100 000 passages toutes causes. 2014-2023. France hexagonale. Source : OSCOUR®.


1.1.1.1 <u>Evolution mensuelle</u>

Le taux de passages aux urgences pour piqûre d'hyménoptère parmi 100 000 passages toutes causes entre 2014 et 2023 présentait une dynamique saisonnière marquée, avec un recours aux urgences plus élevé sur les mois de juillet pour la majorité des étés, suivi des mois d'août (figure 31). L'amplitude des pics était variable selon les années : c'est en juillet 2018 et en août 2020 qu'ont été observés les taux les plus élevés (respectivement 598,5 et 621,6 passages pour piqûre d'hyménoptère pour 100 000 passages), tandis que les pics les plus faibles ont été observés en juillet 2021 et 2023 (taux de respectivement 288,5 et 275,5 passages pour piqûre d'hyménoptère pour 100 000 passages).

Figure 31 Taux mensuel de passages aux urgences pour piqûre d'hyménoptère pour 100 000 passages toutes causes. 2014-2023. France hexagonale. Source : OSCOUR®.

Cumulé sur la période 2014-2023, le taux de passages pour piqûre d'hyménoptère parmi 100 000 passages toutes causes était plus élevé sur le mois de juillet (405,2), suivi du mois d'août (377,0), puis des mois de juin et septembre (respectivement 260,5 et 191,7) (figure 32).

Figure 32 Taux de passages aux urgences pour piqûre d'hyménoptère pour 100 000 passages toutes causes par mois. 2014-2023. France hexagonale. Source : OSCOUR®.

4.2.2 Evolution des passages aux urgences pour piqûre d'hyménoptère par âge et par sexe

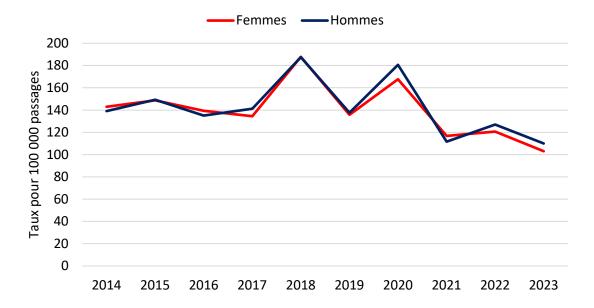
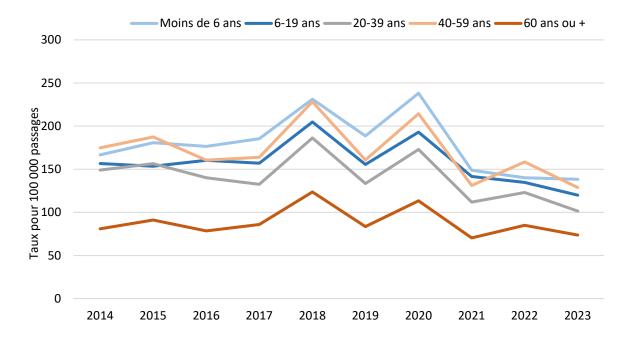

Les données sur le sexe et l'âge n'étaient pas connues pour respectivement 0.08% et 0.03% des passages. Les passages étaient plus fréquents chez les hommes (sexe ratio H/F = 1.08). Près de la moitié des passages concernaient des patients âgés de 20 à 59 ans (48.4%) (tableau VI).

Tableau VI Nombre de passages aux urgences pour piqûre d'hyménoptère et taux de passages aux urgences pour piqûre d'hyménoptère pour 100 000 passages toutes causes. 2014-2023. France hexagonale. Source : OSCOUR®.

	Effectifs ^a (%)	Taux
2014-2023	179 141 (100)	139,3
< 6 ans	29 024 (16,2)	176,6
6-19 ans	33 738 (18,8)	156,0
20-39 ans	44 035 (24,6)	138,8
40-59 ans	42 709 (23,8)	169,0
60 ans ou +	29 622 (16,5)	88,3
Hommes	93 519 (52,2)	140,4
Femmes	85 448 (47,7)	138,0


^a Les effectifs bruts sont à interpréter avec précaution compte-tenu de la montée en charge du réseau sur la période d'étude.

Les taux annuels de passages aux urgences pour piqûre d'hyménoptère pour 100 000 passages toutes causes des hommes et des femmes étaient similaires et présentaient une tendance à la diminution (figure 33).

Figure 33 Taux annuel de passages aux urgences pour piqûre d'hyménoptère pour 100 000 passages toutes causes, par sexe. 2014-2023. France hexagonale. Source : OSCOUR®.

Par classe d'âge, les taux annuels de passage étaient les plus faibles chez les 60 ans et plus, tandis qu'ils étaient les plus élevés chez les moins de 6 ans. A noter que chez ces derniers, les 1-5 ans étaient très largement majoritaires (93% en moyenne sur la période d'étude) (figure 34).

Figure 34 Taux annuel de passages aux urgences pour piqûre d'hyménoptère pour 100 000 passages toutes causes, par classe d'âge, 2014-2023, France hexagonale.

4.2.3 Répartition géographique

L'analyse cartographique par département et par année ne permet pas de dégager de caractéristiques spatio-temporelles du taux de passages aux urgences pour piqûre d'hyménoptère pour 100 000 passages toutes causes (figure 35). L'ensemble des départements de l'hexagone est concerné, avec certaines années plus marquées que d'autres et notamment les années 2018 et 2020.

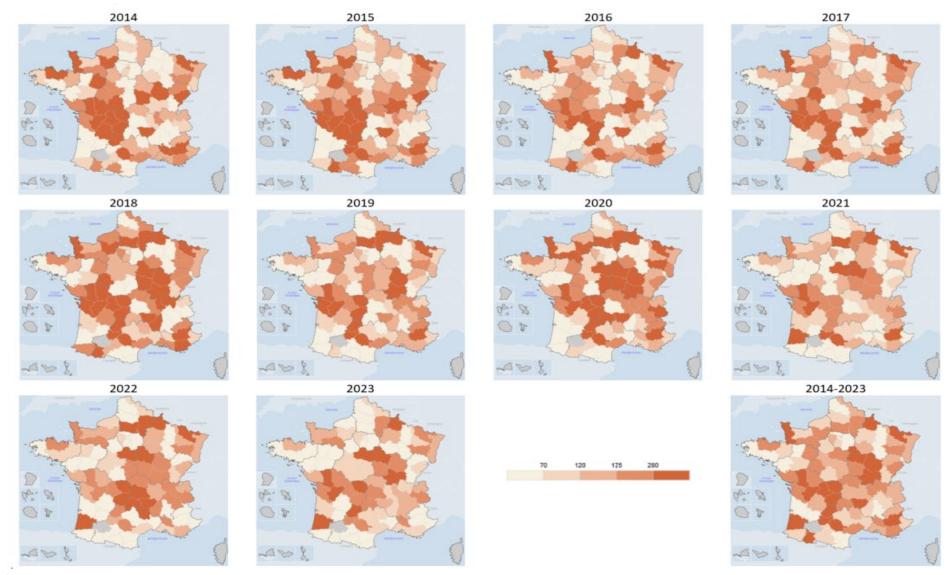
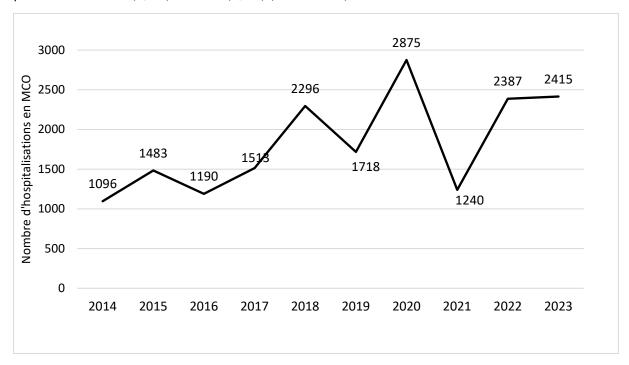


Figure 35 Taux annuel de passages aux urgences pour piqûre d'hyménoptère pour 100 000 passages toutes causes et taux cumulé de passages aux urgences, par département. 2014-2023. France hexagonale. Source : OSCOUR®.


4.3 Hospitalisations pour piqûre d'hyménoptère

4.3.1 Evolution temporelle des hospitalisations après passages aux urgences et des hospitalisations en MCO

4.3.1.1 Evolution annuelle

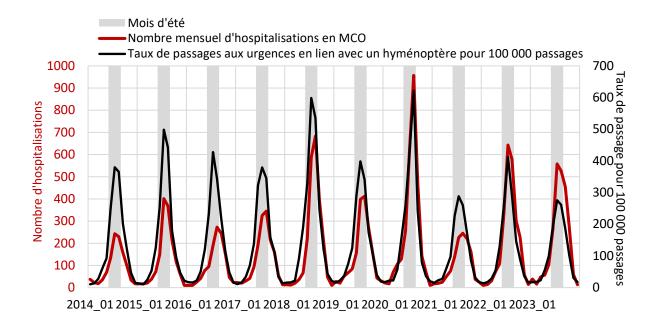
A partir des données du PMSI, 18 213 hospitalisations en MCO pour piqûre d'hyménoptère ont été enregistrées entre 2014 et 2023, soit en moyenne 1 821 hospitalisations par an pour piqûre d'hyménoptère. On observe une légère tendance à la hausse sur la période, avec toutefois une rupture de cette tendance en 2021 avec 1 240 hospitalisations en MCO, effectif faible similaire à ce qui était observé avant 2017, et deux années avec un nombre d'hospitalisations plus marqué en 2020 (2 875 hospitalisations, soit 16% du total des hospitalisations en MCO pour piqûre d'hyménoptère sur toute la période d'étude) et 2018 (2 296 hospitalisations, 13% des hospitalisations pour piqûre d'hyménoptère) (figure 36).

Entre le 1er janvier 2014 et le 31 décembre 2023, 3 527 hospitalisations après un passage aux urgences pour piqûre d'hyménoptère ont été enregistrées via le réseau OSCOUR®, soit un taux moyen de 14 hospitalisations après passage pour 100 000 hospitalisations toutes causes. Ce taux était stable sur la période d'étude, bien que deux années présentaient une rupture à la hausse par rapport à cette tendance : 2018 (taux de 19) et 2020 (taux de 23,6). Par ailleurs, la proportion d'hospitalisations après un passage aux urgences pour piqûre d'hyménoptère était en moyenne de 2%, stable sur la période. Deux années présentaient toutefois une proportion plus élevée : 2020 (2,8%) et 2023 (2,5%) (tableau VII).

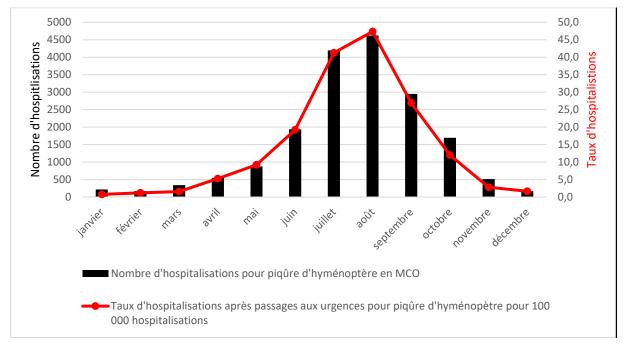
Figure 36 Nombre annuel d'hospitalisations pour piqûre d'hyménoptère en MCO, tous âges. 2014-2023. France hexagonale. Source : PMSI.

Tableau VII Caractéristiques et évolution des hospitalisations après passages aux urgences pour piqûre d'hyménoptère et des hospitalisations en MCO et en REA/SI/SC. 2014-2023. France hexagonale. Source : OSCOUR® et PMSI.

Hospitalisations après passages aux urgences pour piqûre d'hyménoptère (OSCOUR®)			Hospitalisations pour piqûre d'hyménoptère (PMSI)			
	•				Nombre	% d'hospit.
		_	% d'hospit.		d'hospit. en	en
	T-00 10 - (0.1)	Taux pour	parmi les	Nombre d'hospit.	REA/SI/SC((REA/SI/SC)
Année	Effectifs ^a (%)	100 000 hospit.	passages	en MCO(%)	%)	/ MCO
2014	267 (7,6)	14,6	2,2	1 096 (6,0)	106 (4,5)	9,7%
2015	303 (8,6)	13,6	1,9	1 483 (8,1)	153 (6,5)	10,3%
2016	213 (6,0)	8,8	1,3	1 190 (6,5)	125 (5,3)	10,5%
2017	293 (8,3)	11,6	1,7	1 513 (8,3)	195 (8,3)	12,9%
2018	493 (14)	19,0	1,9	2 296 (12,6)	333 (14,1)	14,5%
2019	322 (9,1)	12,7	1,7	1 718 (9,4)	214 (9,1)	12,5%
2020	574 (16,3)	23,6	2,8	2 875 (15,8)	323 (13,7)	11,2%
2021	230 (6,5)	8,4	1,4	1 240 (6,8)	160 (6,8)	12,9%
2022	410 (11,6)	14,1	2,1	2 387 (13,1)	331 (14,1)	13,9%
2023	422 (12,0)	14,2	2,5	2 415 (13,3)	414 (17,6)	17,1%
2014-2023	3527 (100)	14,0	2,0	18 213 (100)	2 354 (100)	12,9%
< 6 ans	184 (5,2)	634,0	0,6	396 (2,2)	0 (0,0)	0,0%
6-19 ans	330 (9,4)	978,1	1,0	1 304 (7,2)	31 (1,3)	2,4%
20-39 ans	692 (19,6)	1 571,5	1,6	2 979 (16,4)	306 (13,0)	10,3%
40-59 ans	1 131 (32,1)	2 648,2	2,6	6 612 (36,3)	934 (39,7)	14,1%
60 ans ou +	1 190 (33,7)	4 017,3	4,0	6 922 (38,0)	1 083 (46,0)	15,6%
Hommes	2 264 (64,2)	17,6	2,4	12 549 (68,9)	1 741 (74,0)	13,9%
Femmes	1 259 (35,7)	10,2	1,5	5 664 (31,1)	613 (26,0)	10,8%


^a Les effectifs bruts sont à interpréter avec précaution compte-tenu de la montée en charge du réseau sur la période d'étude.

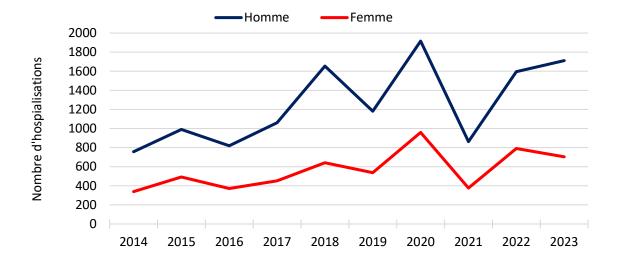
4.3.1.2 Evolution mensuelle


Le taux mensuel d'hospitalisations après un passage aux urgences pour piqûre d'hyménoptère pour 100 000 hospitalisations toutes causes et le nombre mensuel d'hospitalisations en MCO pour piqûre d'hyménoptère entre 2014 et 2023 présentaient des dynamiques très corrélées : une saisonnalité estivale marquée, avec un pic atteint en août pour la majorité des étés et une amplitude variable selon les années (figure 38). Les niveaux les plus élevés étaient observés au mois d'août 2020 (108,1 hospitalisations après un passages aux urgences pour piqûre d'hyménoptère pour 100 000 hospitalisations toutes causes et 957 hospitalisations en MCO), suivi d'août 2018 (taux de 70,8 et 683 hospitalisations en MCO), et dans une moindre mesure des mois de juillet 2022 et 2023 (figure 37).

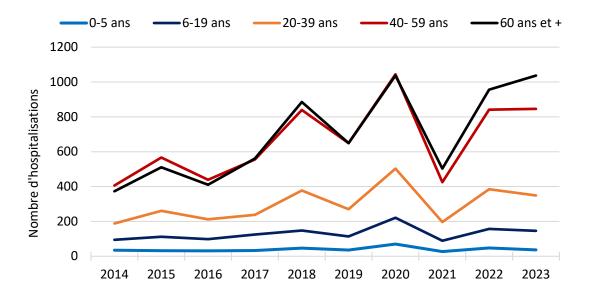
Cumulé sur l'ensemble des 10 années, les deux indicateurs présentaient un pic sur le mois d'août, suivi du mois de juillet, puis septembre et juin (figure 38).

Compte-tenu de la cohérence entre ces deux indicateurs et étant donné que les données d'hospitalisations après un passage aux urgences du réseau OSCOUR® sont comprises dans les données, exhaustives, d'hospitalisations en MCO issues du PMSI, seules les données du PMSI seront présentées pour la suite de l'analyse sur les hospitalisations.

Figure 37 Taux mensuel d'hospitalisations après passage aux urgences pour piqûre d'hyménoptère pour 100 000 hospitalisations et nombre mensuel d'hospitalisations pour piqûre d'hyménoptère en MCO. 2014-2023. France hexagonale. Source: PMSI.


Figure 38 Taux d'hospitalisations après passages aux urgences pour piqûre d'hyménoptère pour 100 000 hospitalisations et nombre cumulé d'hospitalisations pour piqûre d'hyménoptère en MCO par mois. 2014-2023. France hexagonale. Source : PMSI.

4.3.1.3 Caractéristiques des hospitalisations en MCO pour piqûre d'hyménoptère par sexe et par classe d'âge


Entre 2014 et 2023, les hommes représentaient 69% des hospitalisations en MCO (sexe ratio H/F = 2,2) (tableau VI). Une légère tendance à la hausse des effectifs est notée sur la période, plus marquée chez les hommes. Le nombre d'hospitalisations en MCO de l'année 2020 était plus marqué tant chez les hommes (N=1 916) que chez les femmes (N=959) (figure 39).

Les personnes âgées de 40 ans ou plus représentaient en moyenne 74% des hospitalisations en MCO pour piqûre d'hyménoptère entre 2014 et 2023 (tableau VI). Une légère tendance à la hausse des effectifs était également observée sur la période d'étude. L'année 2020 présentait un nombre d'hospitalisations en MCO plus marqué (N=2 081), ainsi que l'année 2023 chez les 60 ans et plus uniquement avec 1 037 hospitalisations en MCO (figure 40).

Chez les enfants de moins de 6 ans, on observait peu d'hospitalisations sur la période d'étude, avec un effectif total de 396 (dont 70 en 2020), soit 2,2% des hospitalisations tous âges en MCO entre 2014-2023 (tableau VII).

Figure 39 Nombre annuel d'hospitalisations pour piqûre d'hyménoptère en MCO par sexe. 2014-2023. France hexagonale. Source : PMSI.

Figure 40 Nombre annuel d'hospitalisations pour piqûre d'hyménoptère en MCO par classe d'âge. 2014-2023. France hexagonale. Source : PMSI.

4.3.1.4 Distribution géographique

La distribution des hospitalisations en MCO pour piqûre d'hyménoptère par département et par année semble dessiner un nombre plus marqué d'hospitalisations sur une diagonale nordest/sud-ouest. L'analyse ne permet cependant pas de dégager de tendance spatio-temporelle. L'ensemble du territoire est concerné avec certaines années plus marquées que d'autres et notamment les années 2018 et 2020 et dans une moindre mesure 2022 et 2023 (figure 41).

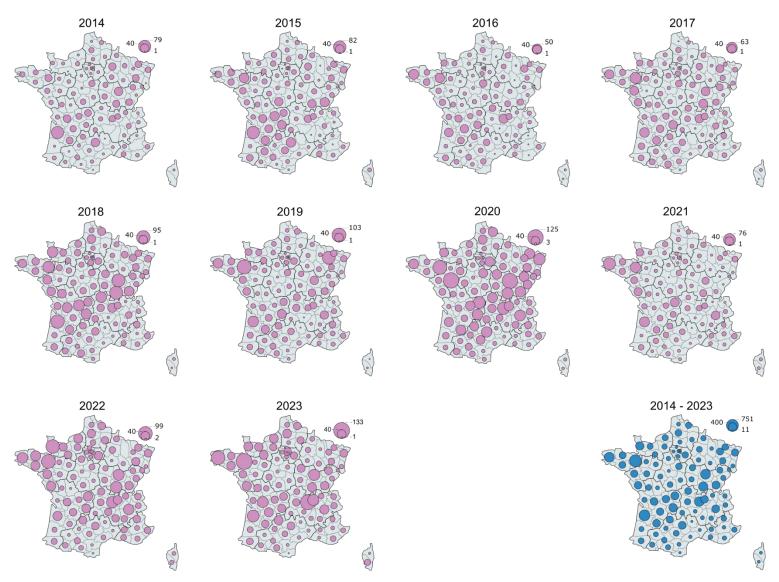



Figure 41 Nombre annuel d'hospitalisations en MCO pour piqûre d'hyménoptère et nombre cumulé d'hospitalisations, par département. 2014-2023. France hexagonale. Source : PMSI.

4.3.2 Hospitalisations en réanimation, soins intensifs et soins continus (REA/SI/SC)

A partir des données du PMSI, 2 354 hospitalisations en REA/SI/SC pour piqûre d'hyménoptère ont été enregistrées entre 2014 et 2023 soit 12,9% des hospitalisations en MCO sur la période d'étude (tableau VI).

On observe une tendance à la hausse de cet indicateur de gravité sur la période d'étude : en 2023, 414 hospitalisations en REA/SI/SC en lien avec une piqûre d'hyménoptère sont enregistrées, avec une proportion d'hospitalisations en REA/SI/SC qui atteint 17% de la part des hospitalisations en MCO, contre 9,7% en 2014 et 14,5% en 2018 qui était pourtant une année particulièrement marquée et ce dans les différentes sources (figure 42). Il était moins élevé en 2020 (11 %), année où les hospitalisations pour piqûres d'hyménoptères avaient été pourtant les plus fréquentes.

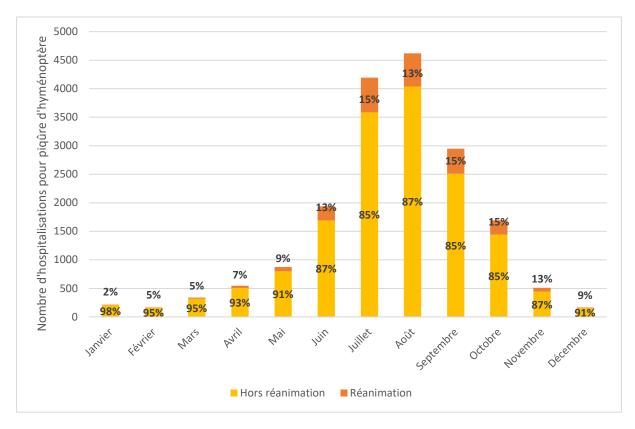
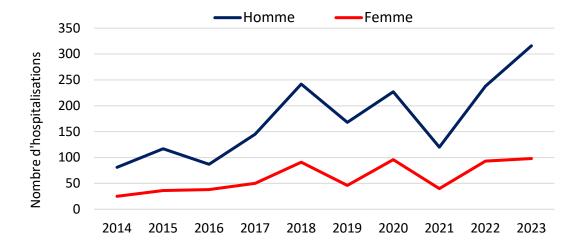


Figure 42 Nombre annuel d'hospitalisations pour piqûre d'hyménoptère en REA/SI/SC et proportion des hospitalisations en REA/SI/SC parmi les hospitalisations en MCO. 2014-2023. France hexagonale. Source : PMSI.

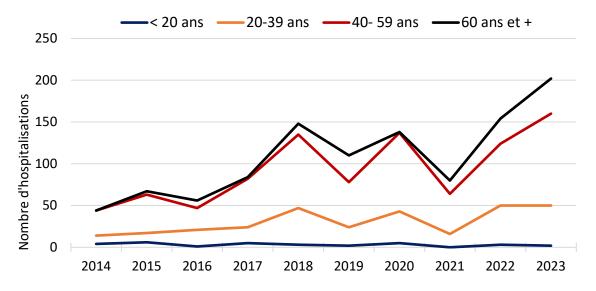
4.3.2.1 Evolution mensuelle

La saisonnalité des hospitalisations en SI/REA/SC est comparable aux autres sources de données avec des pics atteints en période estivale et particulièrement durant les mois de juillet (N=610) et d'août (N=579), suivi du mois de septembre (N=437) (Figure 43).

Alors que le nombre cumulé d'hospitalisations en SI/REA/SC pour piqûre d'hyménoptère sur l'ensemble de la période était plus élevé en juillet puis en août, la proportion d'hospitalisations en SI/REA/SC parmi les hospitalisations en MCO était plus marquée en octobre (14,9 %), en septembre (14,8 %) et en juillet (14,5 %) (figure 43).


Figure 43 Nombre cumulé d'hospitalisations en REA/SI/SC pour piqûre d'hyménoptère et proportion d'hospitalisation en REA/SI/SC pour piqûre d'hyménoptère parmi l'ensemble des hospitalisations en MCO par mois. 2014-2023. France hexagonale. Source : PMSI.

4.3.2.2 <u>Caractéristiques des hospitalisations en REA/SI/SC pour piqûre d'hyménoptère par sexe et par classes d'âge</u>

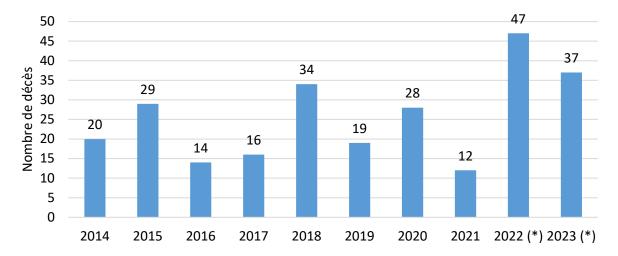

Les hommes représentaient 74% des hospitalisations en REA/SI/SC sur la période d'étude (sexe ratio H/F = 2,8) (tableau VI). Une tendance à la hausse des effectifs chez les hommes était observée entre 2014 et 2023, et un pic très marqué en 2023 avec 316 hospitalisations en REA/SI/SC (figure 44).

Les personnes âgées de 40 ans ou plus représentaient en moyenne 86% des hospitalisations en REA/SI/SC pour piqûre d'hyménoptère entre 2014 et 2023 (tableau VI), avec à nouveau un pic très marqué en 2023 (362 hospitalisations en REA/SI/SC) (figure 45).

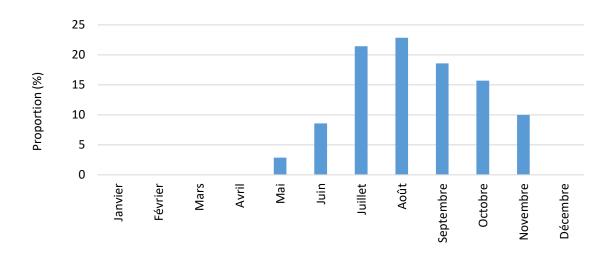
En revanche, aucune hospitalisation en REA/SI/SC sur la période n'était enregistrée chez les enfants de moins de 6 ans et dans de très faibles effectifs chez les 6-19 ans (31 hospitalisations soit 1,3% de toutes les hospitalisations en REA/SI/SC entre 2014-2023).

Figure 44 Nombre annuel d'hospitalisations pour piqûre d'hyménoptère en REA/SI/SC par sexe. 2014-2023. France hexagonale. Source : PMSI.

Figure 45 Nombre annuel d'hospitalisations pour piqûre d'hyménoptère en REA/SI/SC par classe d'âge. 2014-2023. France hexagonale. Source : PMSI.


4.4 Mortalité en lien avec une piqûre d'hyménoptère

Entre 2014 et 2023, 256 certificats de décès en lien avec une piqûre d'hyménoptère ont été comptabilisés.


Le nombre de décès sur la période ne présentait pas de tendance et variait de 12 en 2021 à 49 en 2022, avec trois années plus marquées : 2022 (47 décès), 2023 (37 décès) et 2018 (34 décès) (figure 46).

Plus des trois quarts des décès concernaient des hommes (N=198). L'âge moyen au décès était de 63,4 ans, 62 % des personnes décédées avaient plus de 60 ans et 35 % avaient entre 40 et 59 ans. Par ailleurs, aucun décès ne concernait une personne de moins de 20 ans, et 3 % étaient âgés de 20 à 39 ans.

Cumulé sur l'ensemble des 10 années, le nombre de décès présentait un pic sur le mois d'août, suivi du mois de juillet, puis des mois de septembre, octobre et novembre. On n'observait par ailleurs aucun décès entre le mois de décembre et le mois d'avril inclus (figure 47).

Figure 46 Nombre annuel de décès en lien avec une piqûre d'hyménoptère. 2014-2023, effectifs provisoires en 2022 et 2023. France hexagonale. Source : Inserm-CépiDc.

Figure 47 Répartition mensuelle cumulée (en pourcentages) des décès en lien avec une piqûre d'hyménoptère. 2014-2023. France hexagonale. Source : Inserm-CépiDc.

Parmi ces 256 décès, 70 certificats contenaient plus spécifiquement une mention de piqûre de frelon (27 %), alors que 89 contenaient une mention de piqûre d'abeilles ou de guêpes (35 %), et 90 une mention d'hyménoptère sans précision sur son type (35 %).

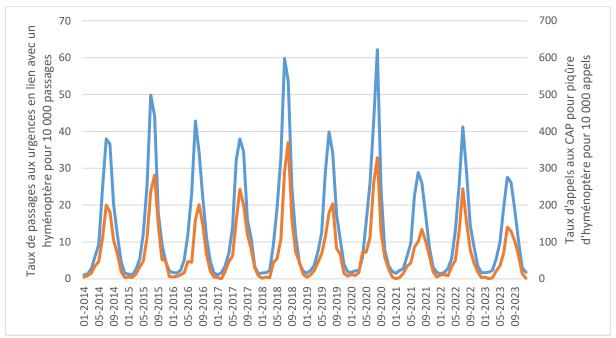
L'âge moyen au décès pour les certificats contenant une mention de frelon était de 67,1 ans. La proportion de certificats avec une mention de frelon variait de 15 % en 2014 à 43 % en 2023. Cette proportion ne présentait pas de tendance sur la période d'étude (figure 48).

Figure 48 Proportion de décès par type d'hyménoptère par année (effectif provisoire pour les années 2022 et 2023). 2014-2023. France hexagonale.

5 Synthèse des résultats issus des différentes sources

Dans cette partie, les résultats issus des différentes sources de données de santé sont mis en perspective les uns des autres.

5.1 Evolution temporelle des envenimations par des hyménoptères


5.1.1 Evolution annuelle

Les différentes sources de données montrent des variations annuelles d'envenimations et une saisonnalité marquée.

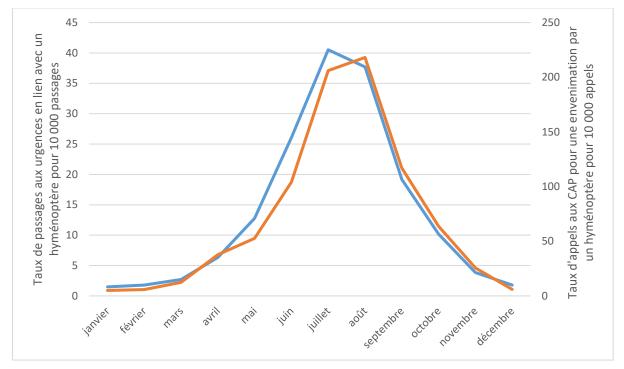
Au total, 6 022 appels aux Centres antipoison et 179 141 passages aux urgences⁵ pour piqûre d'hyménoptère, dont 2 % étaient suivis d'une hospitalisation, ont été enregistrés entre 2014 et 2023 inclus. Bien que d'ordres de grandeur différents, les piqûres d'hyménoptères représentant 0,76 % des appels aux CAP toutes causes et 0,14% des passages aux urgences toutes causes, les observations issues de ces deux sources de données étaient étroitement corrélées dans le temps (figure 49). Les appels aux CAP ne représentent que 3% des passages aux urgences pour piqûre d'hyménoptère.

Si le nombre d'envenimations par des hyménoptères fluctuait entre 2014 et 2023 sans montrer de tendance à la hausse ni à la baisse, un pic annuel d'envenimations était observé en 2018 puis en 2020 dans les données des CAP et des passages aux urgences du réseau OSCOUR®.

Ce pic était observé dans les données mensuelles en juillet 2018 pour les données des passages aux urgences et en août 2018 pour les données des CAP, puis en août 2020 pour les deux sources de données (figure 49).

Figure 49 Répartition mensuelle du taux d'envenimations par des hyménoptères enregistrées par les CAP (en orange) et du taux de passages aux urgences pour piqûre d'hyménoptère (en bleu). France hexagonale. 2014-2023. Sources : SICAP et réseau OSCOUR®.

-


⁵ Montée en charge de l'enregistrement des passages aux urgences toutes causes du réseau OSCOUR® au niveau national de 77% en 2014 à 97% en 2023.

En regard, 18 213 hospitalisations pour piqûre d'hyménoptère ont été enregistrées de 2014 à 2023. Comme pour les appels aux CAP et passages aux urgences, un pic d'hospitalisations pour piqûres d'hyménoptères a été observé en 2018 (2 296 hospitalisations, soit 12,6% des hospitalisations pour piqûre d'hyménoptère de 2014 à 2023) et 2020 (2 875 hospitalisations, soit 15,8 %); des valeurs hautes ont été observées en 2022 et 2023 (2 387 hospitalisations, soit 13,1 %, et 2 415 hospitalisations, soit 13,3 %).

Lorsque l'espèce d'hyménoptère a pu être identifié lors de l'appel au CAP, il s'agissait principalement de guêpe (37 %), puis de frelons toutes espèces confondues (25 %) et d'abeilles (19 %). L'espèce n'était pas identifiée ou correspondait à un autre hyménoptère (bourdon par exemple) pour les 19 % restants. Le taux de piqûres de frelons parmi tous les hyménoptères était stable par année (entre 20 % et 30 %), avec une légère augmentation en 2023.

5.1.2 Saisonnalité

La saisonnalité des piqûres d'hyménoptères était comparable dans les données des CAP et celles des passages aux urgences du réseau OSCOUR®, avec un pic mensuel d'envenimations respectivement observé en juillet et en août (figure 50).

Figure 50 Répartition mensuelle cumulée du taux d'envenimations par des hyménoptères enregistrées par les CAP (en orange) et du taux de passages aux urgences pour piqûre d'hyménoptère (en bleu). 2014-2023. France hexagonale. Sources : SICAP et réseau OSCOUR®.

De même, le pic mensuel d'hospitalisations en lien avec une piqûre d'hyménoptère était observé en août, et celui d'hospitalisation en réanimation ou soins intensifs en juillet. Le pic de décès en lien avec une piqûre d'hyménoptère était quant à lui observé en août.

La saisonnalité des envenimations par des hyménoptères observée dans les données des CAP était concordante avec le cycle de vie de ces insectes : les piqûres par des abeilles étaient observées dès le mois d'avril jusqu'en août, celles par des guêpes de juin à septembre, et celles par des frelons (toutes espèces) de juillet à octobre, les frelons étant présents plus tardivement que les autres hyménoptères, de l'été jusqu'à la fin de l'automne.

5.2 Répartition géographique des envenimations par des hyménoptères

Les données géographiques montraient une répartition comparable et relativement homogène dans tout l'hexagone des piqûres d'hyménoptères, pour les appels aux CAP, les passages aux urgences et les hospitalisations. Aucun département n'était épargné par ces envenimations.

Les piqûres de frelons (toutes espèces) étaient plus fréquentes dans les régions de l'ouest, du sud-ouest et du sud-est de l'hexagone.

5.3 Gravité des envenimations par des hyménoptères

5.3.1 Une plus grande proportion d'envenimations graves par des frelons toutes espèces confondues

Parmi les 6 022 envenimations par des hyménoptères enregistrées par les CAP entre 2014 et 2023, 91 étaient graves (1,5 %), pouvant menacer le pronostic vital ou conduire au décès. Le risque que l'envenimation soit grave était plus élevé en cas de piqûre de frelon (2,3 % des envenimations par des frelons) qu'en cas de piqûre par un autre hyménoptère.

En regard, 18 213 hospitalisations pour piqûre d'hyménoptère ont été enregistrées de 2014 à 2023. Sur ces dix années, 13 % (2 354) des hospitalisations pour piqûre d'hyménoptère l'étaient en réanimation ou soins intensifs. Une tendance à l'augmentation de cette proportion est observée au cours du temps, maximale en 2023 (17 %). Ce pourcentage était moins élevé en 2018 (14 %), année où les recours aux soins pour piqûre d'hyménoptère avaient été pourtant plus fréquentes.

Dans les données des CAP, le nombre d'envenimations graves par des hyménoptères variait également selon les années, avec comparativement un pic observé à 18 et 14 envenimations en 2015 et 2023. Neuf envenimations graves par des frelons (toutes espèces) étaient observées chacune de ces deux années.

Au total, 256 décès en lien avec une piqûre d'hyménoptère ont été comptabilisés entre 2014 et 2023 dans les données de mortalité issues des certificats de décès. Ce nombre variait de 12 à 47 par année, avec trois années plus marquées : 2022 (47 décès), 2023 (37) et 2018 (34). Une mention de piqûre de frelon figurait dans 27 % (70 décès) des certificats de décès, variant de 15 % (3) en 2014 à 43 % (16) en 2023 (données provisoires pour l'année 2023).

Par ailleurs, sur les 256 décès enregistrés de 2014 à 2023, 35 % (89 décès) certificats de décès contenaient une mention de piqûre d'abeilles ou de guêpes, et également 35 % (90 décès) contenaient une mention d'hyménoptère sans précision sur son type (figure 49).

En parallèle, 11 décès figuraient parmi les 91 envenimations graves enregistrées par les CAP. Un frelon (d'espèce non identifiée) était responsable de quatre d'entre eux, une guêpe de deux et une abeille d'un. L'hyménoptère n'avait pas pu être précisé pour quatre décès.

5.3.2 Des envenimations graves majoritairement dues à des réactions allergiques

Une réaction allergique, seule ou associée à des signes toxiques, a été décrite dans 89 % des envenimations graves par des hyménoptères enregistrées par les CAP. Une seule piqûre avait été suffisante pour causer l'envenimation grave dans près de la moitié des cas (48 %) et de 10

piqûres ou moins dans trois quarts des cas (74 %). Une seule ou peu de piqûres suffisent à causer une envenimation grave.

Enfin, les personnes avaient été piquées par des hyménoptères au niveau de la tête et du cou, qui sont des localisations à risque, pour près de deux tiers (62 %) d'envenimations graves ; 9 % avaient été piquées corps entier.

5.4 Caractéristiques des personnes piquées par des hyménoptères

Les personnes âgées de 20 à 39 ans étaient les plus concernées par des envenimations par hyménoptères, pour les appels aux CAP (28 %) comme pour les passages aux urgences (25 %).

Les taux annuels de passages aux urgences pour piqûre d'hyménoptère, comparativement aux passages aux urgences toutes causes, étaient les plus faibles chez les 60 ans et plus, tandis qu'ils étaient les plus élevés chez les moins de 6 ans.

Les personnes piquées par un hyménoptère étaient un peu plus souvent des hommes dans ces deux sources de données (52 % pour chacune).

Pour les appels aux CAP, les personnes piquées par un frelon étaient en moyenne plus âgées que celles piquées par un autre hyménoptère (50 ans versus 31 ans).

Les envenimations graves par des hyménoptères concernaient le plus souvent des adultes de plus de 60 ans : 37 % des envenimations graves issues des données des CAP, 38 % des hospitalisations et 46 % des hospitalisations en réanimation ou soins intensifs. Aucune hospitalisation en réanimation ou soins intensifs pendant la période n'était enregistrée chez les enfants de moins de 6 ans. Il s'agissait également majoritairement d'hommes.

Enfin, plus des trois quarts (77 %) des décès concernaient des hommes. L'âge moyen au décès était de 63,4 ans, et de 67,1 ans pour les certificats contenant une mention de frelon. Aucun décès en lien avec une piqûre d'hyménoptère ne concernait une personne de moins de 20 ans.

6 Discussion

En préambule, aucune des bases présentées n'est à elle seule exhaustive des envenimations par des frelons à pattes jaunes et autres hyménoptères.

Les intérêts et limites de chaque base de données sont présentés ci-dessous. Un même patient pouvait être compté dans plusieurs sources, sans possibilité d'identification.

6.1 Forces et limites des données des Centres antipoison

La Réponse téléphonique à l'urgence des Centres antipoison (CAP) s'inscrit par décret dans l'aide médicale urgente, plus spécialisée dans le domaine de la toxicologie.

La base de données des CAP constitue un bon descriptif des intoxications lorsque la surveillance et la prise en charge sont majoritairement réalisées à domicile en suivant les recommandations des professionnels de santé des CAP qui évaluent le risque et donnent une conduite à tenir. Si besoin, les patients sont orientés vers une consultation médicale en ville ou aux urgences, en collaboration avec les SAMU.

Les CAP ne sont pas systématiquement appelés pour des intoxications mêmes graves, mais peuvent être sollicités dans ces situations par des professionnels de santé pour des conseils de prise en charge. Si l'urgentiste connait la prise en charge de l'intoxication, il ne demandera pas un avis au CAP.

Chaque année, les appels pour piqûre d'insectes représentent environ un tiers des cas symptomatiques associés à une exposition à un animal enregistrés par les CAP, avant les morsures de serpents ou d'araignées. Les piqûres d'hyménoptères représentent également deux tiers des piqûres d'insectes pour lesquelles l'insecte est identifié, avant les envenimations par des chenilles processionnaires.

Il est possible de connaître l'espèce d'hyménoptère en cause dans l'envenimation, lorsque celui-ci a pu être identifié lors de l'appel au CAP (insecte écrasé ou visualisé à proximité de la personne, description du nid...).

6.2 Forces et limites des sources Oscour®, PMSI et mortalité

L'exhaustivité –ou quasi exhaustivité - constitue la première force des bases de données sur les passages aux urgences du réseau OSCOUR* (97% des passages nationaux en 2023), sur les hospitalisations issues du PMSI et les décès issus du CépiDc. Ces trois sources permettent ainsi une surveillance systématique et nationale des indicateurs.

Toutefois, dans cette analyse rétrospective visant à comparer les évolutions sur dix ans, les données de 56 structures d'urgences du réseau OSCOUR®, principalement situées en PACA et en Corse, ont dû être exclues, un changement de logiciels en 2022 ne leur permettant plus de collecter certains codes de diagnostics médicaux, dont ceux liés aux piqûres d'hyménoptère. Cette limite est cependant temporaire, dès lors que les codes diagnostics seront réintroduits dans le logiciel utilisé par ces 56 structures.

Les trois sources de données sont complémentaires entre elles et avec celle des Centres antipoison, car elles captent différents stades de gravité des piqûres d'hyménoptère. En revanche, les sources OSCOUR® et PMSI ne permettent pas de distinguer les piqûres de frelon des piqûres d'un autre hyménoptère. Dans les causes médicales issues des certificats de décès, il est possible de trouver des informations sur l'hyménoptère, mais elles sont déclaratives et non systématiquement renseignées.

Par ailleurs, la piqûre d'hyménoptère constitue une cause du passage aux urgences. Le code utilisé pour piqûre d'hyménoptère peut être indiqué en diagnostic associé et non en diagnostic principal (par exemple, le diagnostic principal serait œdème de Quincke et piqure d'hyménoptère pourrait être codé en diagnostic associé). Or, moins de 30 % des passages aux urgence ont un diagnostic associé. Toutefois, ce biais de sous-estimation est probablement stable dans le temps et dans l'espace et ne gêne pas l'interprétation des tendances entre 2014 et 2023.

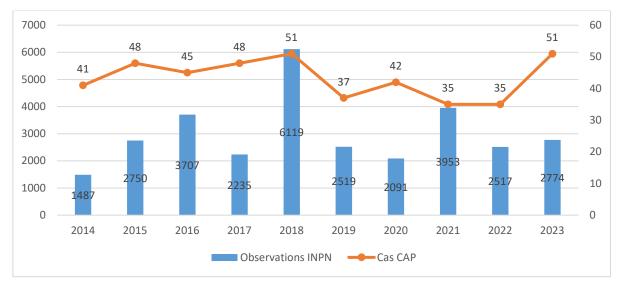
Les résultats des différentes sources sont cohérents. Le contexte particulier de l'année 2020 amène toutefois à la prudence dans l'interprétation des indicateurs et notamment du taux de passages aux urgences pour piqure d'hyménoptère pour 100 000 passages toutes causes. En effet, le nombre de passage toutes causes (dénominateur du taux) était en diminution du fait de l'épidémie de Covid-19, alors que le nombre de passages pour piqûre d'hyménoptère (numérateur du taux) restait proche des années précédentes, entrainant une hausse artificielle du taux de passages aux urgences pour piqûre d'hyménoptère.

De par le mode de collecte en routine des passages aux urgences du réseau OSCOUR® à Santé publique France, cette source permet une surveillance réactive et régulière de l'évolution des passages et des hospitalisations après passage aux urgences.

La montée en charge progressive de la certification électronique des décès (43 % en 2024, 50 % en 2025) et le délai de remontée des données des certificats de décès incluant les causes médicales, (24h après le décès pour les certificats électroniques, entre 2 et 4 mois pour les certificats papier) offrent également l'opportunité d'une surveillance réactive de la mortalité en lien avec les piqûres d'hyménoptère.

6.3 Comparaison avec les observations de terrain

Les données d'observation de frelon à pattes jaunes sur le terrain ont été comparées à celles des envenimations enregistrées par les CAP, pour la période 2014-2023 (figures 51 et 52).


6.3.1 Par année

Le nombre d'observations disponibles sur l'Inventaire national du patrimoine naturel (INPN⁶) ne suivent pas toujours les données des CAP. Ces différences peuvent être expliquées par la qualité du suivi du frelon. En effet, les données diffusées sur l'INPN ont plusieurs sources, des programmes de sciences participatives, d'organismes partageant leurs données de biodiversité et, surtout, les données de différents organismes assurant la gestion de l'espèce à une échelle départementale ou régionale. La qualité du suivi peut alors fluctuer en fonction de la sensibilisation du public ou des financements de ces organismes locaux. Il peut également y avoir un retard dans le versement des données sur l'INPN. Cette hétérogénéité des données peut également se mêler avec les conditions environnementales. Ces dernières peuvent influencer la disponibilité en proies pour les frelons, qui, en cas de carence, peuvent se rabattre sur l'alimentation humaine, augmentant ainsi la probabilité de rencontre avec la population humaine et de piqûre.

Les appels aux CAP ne représentent qu'une partie des envenimations par des frelons à pattes jaunes survenues sur le territoire. Leur représentativité n'est pas connue. De plus, s'agissant de

⁶ MNHN & OFB [Ed]. 2003-2025. Fiche de *Vespa velutina* Lepeletier, 1836. Inventaire national du patrimoine naturel (INPN). https://inpn.mnhn.fr/espece/cd nom/433589

téléconsultations, il existe une incertitude sur l'identification de l'espèce de frelon dans les données des CAP.

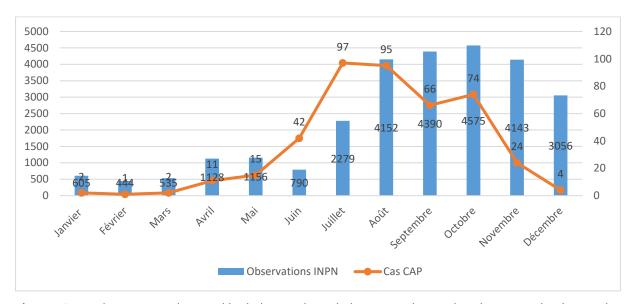


Figure 51 Nombres annuels d'observations sur le terrain de l'INPN et d'envenimations enregistrées par les CAP de frelons à pattes jaunes. 2014-2023. France hexagonale. Sources : INPN et SICAP.

6.3.2 Par mois cumulés (saisonnalité)

Les données d'observations sur le terrain de fin d'été jusqu'à l'hiver et des cas enregistrées par les CAP ne semblent pas corrélées. Le frelon à pattes jaune présente un cycle annuel avec une augmentation de la taille des populations des nids durant l'été, un pic début octobre, puis une baisse rapide. Les données du CAP montrent une diminution des envenimations en septembre et octobre, mois correspondant à ceux où les colonies de ce frelon sont les plus populeuses.

L'origine de cet écart peut s'expliquer par les modalités de recueil des données de l'INPN. Les organismes locaux ne prennent pas forcément en compte les observations d'ouvrières seules, mais essentiellement celles des nids. Or les nids sont majoritairement observés en automne lorsque les arbres perdent leurs feuilles. Ceci peut faire baisser le nombre de données estivales et augmenter les données automnales.

Figure 52 Nombres mensuels cumulés d'observations de l'INPN et d'envenimations enregistrées par les CAP de frelons à pattes jaunes. 2014-2023. France hexagonale. Sources : INPN et SICAP.

6.4 Autres frelons invasifs

Hormis le frelon à pattes jaunes (*Vespa velutina*) largement répandu, le frelon oriental (*Vespa orientalis*) est une autre espèce de frelon exotique présente en France hexagonale, dont quelques individus ont été détectés à Marseille. Les frelons géants (*Vespa mandarinia* et *Vespa soror*) n'ont pas encore été observés.

6.4.1 Frelon oriental (Vespa orientalis)

Le frelon oriental a été introduit accidentellement dans le sud de l'Espagne et il s'y répand désormais. Deux introductions distinctes y ont été observées, l'une à Valence en 2012 et l'autre à Algésiras en 2018. Il a également été introduit au Chili. Il a également été observé à Madagascar, au Mexique et en Chine, mais sans sembler s'y être implanté. Plusieurs spécimens isolés ont été répertoriés plus au nord en Europe, importés via des lots de fruits notamment, sans pouvoir donner lieu à des invasions.

Il est observé en France depuis septembre 2021 à Marseille avec au moins un nid établi en 2021. La présence de l'espèce dans l'agglomération se confirme dans les années suivantes avec un nid détruit en 2022 et un autre en 2023, ainsi que des individus contactés en des points assez éloignés, mettant en évidence l'existence d'autres nids.

En 2023, l'espèce est aussi détectée dans le Var et dans les Alpes-Maritimes (figure 53), ce qui suggère que la présence de l'espèce à Marseille n'est peut-être pas le fruit d'une introduction accidentelle par les transports maritimes, mais d'une expansion naturelle de son aire de répartition depuis la péninsule italienne, où l'espèce est naturellement présente et connaît une expansion vers le nord du fait du réchauffement climatique.

Le frelon oriental présente peu d'interactions avec l'Homme, n'est pas agressif envers lui et ne représente pas une menace pour la santé des abeilles.



Figure 53 Observations de Vespa orientalis au 12/10/2023. Source : INPN.

6.4.2 Frelons géants (Vespa mandarinia japonica et Vespa soror)

Le frelon grand-duc (*Vespa soror*), aussi appelé frelon géant du Sud, est une espèce de frelon originaire d'Asie du Sud-Est. De son nom latin, ce frelon est une espèce sœur de *Vespa ducalis*, qui signifie frelon duc, mais c'est une espèce sœur de *Vespa mandarinia*, qui est un frelon géant. Les entomologues ont donc choisi d'appeler *Vespa soror* « frelon grand-duc » pour conserver l'origine de son nom tout en le rapprochant du frelon géant.

Sa présence a été récemment confirmée en Espagne (Sánchez et al. 2024), suscitant des inquiétudes quant à son impact potentiel sur la santé humaine, la biodiversité et l'apiculture locales⁷.

C'est l'un des plus grands frelons connus et peut atteindre jusqu'à 46 mm. Il se distingue par une tête jaune, un thorax noir du côté de la tête et orange du côté de l'abdomen. Les deux premiers segments de l'abdomen présentent un dégradé de jaune, d'orange puis de brun, tandis que les autres segments sont noirs.

Des individus ont été détectés pour la première fois en mars 2022, en Espagne. En tout, quatre spécimens de frelons grand-duc ont été collectés en mars 2022 et octobre 2023 dans les Asturies. Son mode d'introduction n'est pas connu. Cette découverte est préoccupante, car elle suggère une possible expansion de l'espèce sur le continent européen.

Le frelon grand-duc est un prédateur redoutable, qui attaque souvent en groupe et qui se nourrit de divers insectes, dont les abeilles domestiques. Les piqûres de *Vespa soror* sont très douloureuses et peuvent provoquer des réactions allergiques sévères chez certaines personnes pouvant aller jusqu'au décès, comme avec les autres espèces d'hyménoptères.

Son arrivée en France hexagonale est donc particulièrement à surveiller notamment dans le sud-ouest où le climat conviendrait à son installation et son développement.

_

⁷ <u>Vespa soror : un nouveau frelon géant aux portes de la France - Espèces Risque Santé</u>

7 Recommandations

Le frelon à pattes jaunes (*Vespa velutina*), présent sur tout le territoire hexagonal, peut être responsable d'envenimations graves pour l'Homme en cas de piqûres multiples, de piqûres des muqueuses ou d'allergie au venin d'hyménoptères.

Afin de suivre l'évolution de l'impact sanitaire lié aux piqûres d'hyménoptères, l'Anses recommande de surveiller les recours aux soins dus aux envenimations par des hyménoptères à partir des données des passages aux urgences et des données des passages aux urgences suivis d'une hospitalisation (Réseau OSCOUR® de Santé Publique France).

Par ailleurs, du fait de la présence en Espagne d'une nouvelle espèce de frelon invasif dangereux pour l'Homme et la filière apicole, le frelon grand-duc (*Vespa soror*), l'Anses recommande de sensibiliser les toxicologues des CAP à l'arrivée de ce frelon et de mettre en place une surveillance spécifique, par questionnaire prospectif notamment sur le lieu et les circonstances d'exposition, à partir des données des CAP dès sa première détection en France hexagonale.

Enfin, l'Anses rappelle les mesures de protection de la population à prendre en cas de découverte d'un nid de frelons (toutes espèces) ou de piqûres d'hyménoptères (annexe 5).

8 Conclusion et perspectives

Le frelon à pattes jaunes (*Vespa velutina*), présent sur tout le territoire hexagonal, est responsable d'envenimations graves pour l'Homme en cas de piqûres multiples, de piqûres des muqueuses ou d'allergie au venin d'hyménoptères.

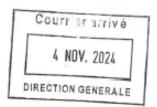
Une expansion de cette espèce étant prévisible d'ici 2100 du fait de conditions climatiques favorables à son installation, une adaptation à sa cohabitation est donc indispensable.

L'information de la population sur la conduite à tenir en cas de piqûres ou de présence de nids de frelons reste essentielle pour éviter les envenimations (voir recommandations en annexe), ainsi que la publication d'arrêtés relatifs à la loi du 15 mars 2025 visant à endiguer sa prolifération et à préserver la filière apicole.

Afin de suivre l'évolution des envenimations par des hyménoptères, l'Anses recommande de surveiller les données des passages aux urgences, dont ceux suivis d'une hospitalisation.

D'autres nouvelles espèces de frelons invasifs et dangereux pour l'Homme et la filière apicole sont à craindre, comme le frelon grand-duc (*Vespa soror*) observé en Espagne en 2022. La vigilance reste de mise pour détecter leur arrivée sur le territoire.

9 Bibliographie


- Barbet-Massin, Morgane, Quentin Rome, Franck Muller, Adrien Perrard, Claire Villemant, et Frédéric Jiguet. 2013. « Climate change increases the risk of invasion by the Yellow-legged hornet ». *Biological Conservation* 157 (janvier): 4-10. https://doi.org/10.1016/j.biocon.2012.09.015.
- Brunet, J.L., B. Girodet, et N. Pham-Thi. 2022. « Principaux hyménoptères et autres arthropodes piqueurs et mordeurs de nos régions ». Revue Française d'Allergologie 62 (1): 5-17. https://doi.org/10.1016/j.reval.2021.07.005.
- De Haro et Blanc-Brisset. 2009. « Conséquences sanitaires de l'installation du frelon asiatique Vespa velutina en France: expérience des Centres Antipoison français. Rapport d'étude de toxicovigilance. », 20.
- Fournier, Alice, Morgane Barbet-Massin, Quentin Rome, et Franck Courchamp. 2017. « Predicting species distribution combining multi-scale drivers ». Global Ecology and Conservation 12 (octobre): 215-26. https://doi.org/10.1016/j.gecco.2017.11.002.
- Laborde-Castérot, Hervé, Eric Darrouzet, Gaël Le Roux, Magali Labadie, Nicolas Delcourt, Luc De Haro, Dominique Vodovar, et al. 2021. « Ocular Lesions Other Than Stings Following Yellow-Legged Hornet (*Vespa velutina nigrithorax*) Projections, as Reported to French Poison Control Centers ». *JAMA Ophthalmology* 139 (1): 105. https://doi.org/10.1001/jamaophthalmol.2020.4877.
- Persson, Hans E., Gunilla K. Sjöberg, John A. Haines, et Jenny Pronczuk De Garbino. 1998. « Poisoning Severity Score. Grading of Acute Poisoning ». *Journal of Toxicology: Clinical Toxicology* 36 (3): 205-13. https://doi.org/10.3109/15563659809028940.
- Ring, J, et K Messmer. 1977. « INCIDENCE AND SEVERITY OF ANAPHYLACTOID REACTIONS TO COLLOID VOLUME SUBSTITUTES ». The Lancet 309 (8009): 466-69. https://doi.org/10.1016/S0140-6736(77)91953-5.
- Rollard, Christine, Jean-Philippe Chippaux, et Max Goyffon. 2015. *La fonction venimeuse*. Cachan: Lavoisier-Tec & doc.
- Rome, Q., F. J. Muller, A. Touret-Alby, E. Darrouzet, A. Perrard, et C. Villemant. 2015. « Caste differentiation and seasonal changes in *Vespa velutina* (Hym.: Vespidae) colonies in its introduced range ». *Journal of Applied Entomology* 139 (10): 771-82. https://doi.org/10.1111/jen.12210.
- Rome, Q, C Sourdeau, F Muller, et C Villemant. 2013. « Le piégeage du frelon asiatique Vespa velutina nigrithorax. Intérêts et dangers ». Journées nationales des groupements techniques vétérinaires.
- Roussel, C., J. Birnbaum, X. Van Der Brempt, et C. Neukirch. 2022. « Traitement de l'allergie aux venins d'hyménoptères et autres insectes ». *Revue Française d'Allergologie* 62 (1) : 62-76. https://doi.org/10.1016/j.reval.2021.10.002.
- Sánchez, Omar, Leopoldo Castro, Álvaro Fueyo, Yaisel J. Borrell, et Andrés Arias. 2024. « Early Alarm on the First Occurrence of the Southern Giant Hornet *Vespa soror* du Buysson, 1905 (Vespidae) in Europe ». *Ecology and Evolution* 14 (11): e70502. https://doi.org/10.1002/ece3.70502.
- Van Der Brempt, X. 2022. « Les anaphylaxies aux piqûres de frelons asiatiques (Vespa velutina) : cas déclarés au Réseau d'Allergo-Vigilance® (RAV) de 2011 à 2021 et conduite à tenir ».

 *Revue Française d'Allergologie 62 (2) : 166-70. https://doi.org/10.1016/j.reval.2022.02.006.
- Viriot, D., S. Sinno-Tellier, et L. De Haro. 2015. « Ce frelon asiatique qui fait si peur : quoi de neuf en urgence? » *Toxicologie Analytique* et *Clinique* 27 (2) : S30. https://doi.org/10.1016/j.toxac.2015.03.036.

10 Annexes

Annexe 1 Courrier de saisine

Direction générale de la santé

Sous-direction Prevention des risques Lies A L'ENVIRONNEMENT ET A L'ALIMENTATION BUREAU ENVIRONNEMENT EXTERIEUR ET PRODUITS CHIMIQUES

Affaire suivie par : Bertrand PENSEC Tél.: 06.58.47.34,77 Měl.: bertrand.pensec@sante.gouv.fr

Nos réf. : D-24-014696

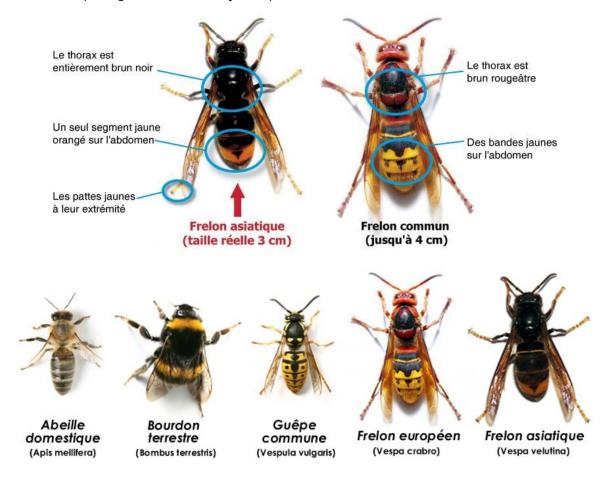
Paris, le 23/10/2024

Le Directeur général de la santé

à

Monsieur le Directeur général de l'Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail

Objet : Saisine relative à la réalisation d'une analyse des données des Centres Antipoison et de données de santé complémentaires concernant l'exposition au frelon à pattes jaunes et aux hyménoptères présents en France métropolitaine


Le freion à pattes jaunes Vespa velutina est un insecte invasif dont la présence en France a été signalée pour la première fois dans le Lot-et Garonne en 2004. Présent dans 13 départements en 2006, le frelon à pattes jaunes en avait envahi 56 en 2012 et a depuis conquis l'ensemble de la France métropolitaine d'après les données du Muséum national d'histoire naturelle (http://frelonasiatique.mnhn.fr/). Prédateur de nombreux insectes dont l'abeille domestique Apis mellifera, Vespa velutina peut entraîner des conséquences graves sur la santé humaine (œdème facial, choc anaphylactique...), particulièrement en cas de piqures multiples, de piqure unique localisée sur une muqueuse ou encore en cas d'allergie au venin d'hyménoptère.

Les derniers travaux de toxicovigilance, portant sur la période 2009-2013, faisaient état de 2816 cas d'envenimations par des hyménoptères rapportés aux centres anti-poisons, dont 202 graves et 4 décès, mais souvent sans précision sur l'espèce impliquée.

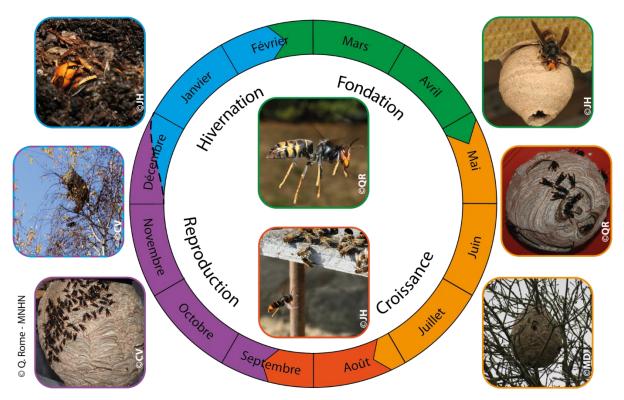
Aujourd'hui, plus de 10 ans après ce travail et alors que le frelon à pattes jaunes a étendu son aire de répartition et semble menacer la biodiversité, les propositions de loi se multiplient (proposition de loi n°2260, relative à la lutte contre le freion asiatique ; proposition de loi n°143 visant à endiguer la prolifération du freion asiatique et à préserver la filière apicole), alors que les données d'impact sur la santé humaine ne sont pas actualisées. De plus, d'autres espèces de freions non autochtones dont la dangerosité et les impacts ne sont pas établis ont été détectées en France, tel que le freion oriental (Vespa orientalis), observé pour la première fois en 2021 dans le sud du pays. Il vous est donc demandé de réaliser une étude des données annuelles des Centres Antipoison depuis 2014 afin de décrire les conséquences des expositions au frelon à pattes jaunes et aux espèces d'hyménoptères sur la santé humaine, en précisant les contextes et les conditions d'exposition (notamment géographiques), ainsi que le cas échéant, les facteurs de vulnérabilité. Par ailleurs, vous utiliserez des bases de données complémentaires afin de fournir un tableau descriptif complet des envenimations par hyménoptères sur la période d'étude : les données des passages aux urgences OSCOUR®, les données du CépiDC, que Santé Publique France et l'Inserm vous fourniront, ou de toute autre source que vous jugeriez pertinente.

Le rendu final de cette analyse est attendu pour le <u>1" mars 2025</u>. Elle concernera les données disponibles en France métropolitaine et portera sur l'ensemble des voies d'exposition à ce frelon.

Annexe 2 Morphologie des différents hyménoptères

Source: https://www.frelonasiatique76.fr/frelon_asiatique/

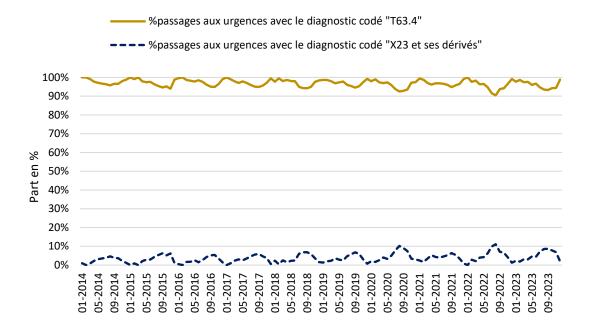
Voir aussi:

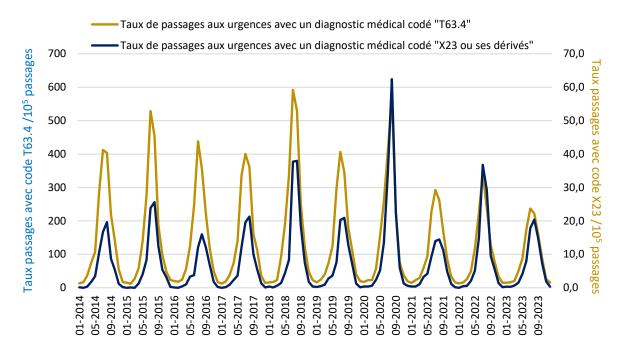

Rome, Q., Villemant, C. 2021. Fiche d'aide à l'identification de Vespa velutina. Muséum national d'Histoire naturelle.

https://frelonasiatique.mnhn.fr/wp-

content/uploads/sites/10/2021/10/Fiches Identification Vespa velutina MNHN.pdf

Annexe 3 Cycle biologique de Vespa velutina


Le nombre maximum de frelons adultes dans le nid et aux alentours est atteint en octobre novembre pour ensuite diminuer avec le départ des futures reines fécondées pour leur lieux d'hivernage (souche, dans le sol, tas de bois et anfractuosités diverses). L'ensemble de la colonie meurt l'hiver venu. Un nid vide n'est jamais recolonisé mais peut persister pendant plusieurs mois après la disparition de la colonie. Les nids sont particulièrement visibles à l'automne une fois les feuilles tombées.


- Automne : Développement de femelles et mâles sexués / Reproduction.
- Fin d'automne : Mort de la vieille reine, des ouvrières et des mâles. Seules les reproductrices de nouvelle génération survivent
- Hiver: hivernage des femelles reproductrices (vieux tronc, litière, ...)
- Fin d'hiver : Sortie d'hivernage des nouvelles fondatrices, Fondation d'un nid primaire de petite taille (endroits abrités : cabanons, ruchettes vides, ...)
- Début de printemps : ponte
- Printemps (mi-mai): émergence d'ouvrières
- Été: Construction d'un nid secondaire par les ouvrières, Début de la prédation, Déménagement de la reine dans le nid secondaire et ponte.

Les couleurs de contour des photos correspondent à celles des différentes périodes du cycle (d'après (Rome et al. 2013)).

Annexe 4 Graphiques complémentaires relatifs aux données des urgences du réseau OSCOUR®

Figure A4.1 Proportion mensuelle de passages aux urgences avec un diagnostic médical principal ou associé codé soit T63.4 soit X23, parmi l'ensemble des passages aux urgences pour piqûre d'hyménoptère. 2014-2023. France hexagonale. Source : OSCOUR®.

Figure A4.2 Taux mensuel de passages aux urgences avec les codes diagnostics T63.4 (vert) ou X23 et ses dérivées (bleu) pour 100 000 passages toutes causes. 2014-2023. France hexagonale. Source : OSCOUR®.

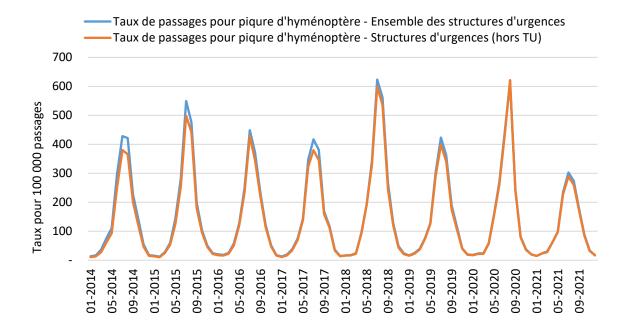


Figure A4.3 Taux mensuel de passages aux urgences pour piqure d'hyménoptère pour 100 000 passages toutes causes dans l'ensemble des structures d'urgences (bleu) et dans l'ensemble des structures d'urgences à l'exception des 56 structures utilisant le logiciel TU cumulés avec établissements ayant le logiciel TU (orange). 2014-2021. France hexagonale. Source: OSCOUR®.

Annexe 5 Prévention en cas de découverte d'un nid ou de piqûre de frelon

Que faire en cas de découverte d'un nid de frelons?

- Avant travaux dans votre jardin, vérifiez qu'un nid n'est pas installé dans un buisson ou une haie.
- Respectez une distance de sécurité de 5 mètres du nid. Ne tentez pas de le détruire vous-même.
- N'installez pas de pièges (bouteille en plastique avec du sirop...), car ils tuent les autres insectes indispensables à la biodiversité et n'auront quasiment aucun impact sur le nid visé.
- S'il s'agit de frelons à pattes jaunes, signalez le nid à votre mairie ou directement à l'organisme animant la lutte contre cette espèce dans votre département. Vous pouvez également le signaler sur le site de l'Inventaire national du patrimoine naturel (INPN) : Frelon Asiatique » Signaler informations

Que faire en cas de piqûre de frelon, guêpe ou abeille?

- En cas de réaction telle qu'urticaire, œdème de la langue, gêne respiratoire, malaise, douleur thoracique..., appelez en urgence le 15, le 112 ou le 114 pour les personnes malentendantes. De même en cas de piqûre dans la bouche, la gorge, de piqûres multiples ou si les symptômes locaux s'aggravent.
- En cas d'allergie connue au venin d'hyménoptères et de signes d'allergie grave (choc anaphylactique), utilisez la seringue auto-injectable d'adrénaline si vous en avez une et appeler le 15 ou le 112 (ou le 114).
- Pour les autres signes d'intoxication, appelez un Centre antipoison (numéro d'urgence 24/24, 7/7 : 01 45 42 59 59) ou consultez un médecin.

CONNAÎTRE, ÉVALUER, PROTÉGER

AGENCE NATIONALE DE SÉCURITÉ SANITAIRE de l'alimentation, de l'environnement et du travail

14 rue Pierre et Marie Curie 94701 Maisons-Alfort Cedex www.anses.fr